
Combinatorial Optimisation

and Constraint Programming (1DL442)

Uppsala University – Autumn 2024

Assignment 6: The Circuit, Cumulative, Disjunctive

Constraints and Black-Box Search

Prepared by Pierre Flener and Frej Knutar Lewander

— Deadline: 13:00 on Friday 17 January 2025 —

It is strongly recommended to read the Grading Rules below and the Submission Instructions
at the end of this document even before attempting to tackle its tasks. It is also strongly
recommended to prepare and attend the help sessions, as huge time savings may ensue.

Questions and Grading Rules

Assignment 6 is graded 0..5 and covers Modules 6 to 9 (not Module 10) of the MiniCP
teaching materials [1]. The tasks are as follows (solo teams or designated sub-teams may skip
in Tasks B to D everything about the problems starred there), a report being only needed if
you take on Task C and possibly also Task D (those tasks are mandatory for PhD students):

A. Individually: Pass all the Theoretical Questions at INGInious of all those modules.

B. As a team:

• Pass all the unit tests at INGInious for Circuit (Module 6), TSP (Module 6, with
both custom search and * LNS), VRP (Module 6), CumulativeDecomposition
(Module 7), Cumulative (Module 7), RCPSP (Module 7), DisjunctiveBinary
(Module 8), JobShop (* Module 8, both the model and first-fail branching),
LastConflictSearch (Module 9), ConflictOrderingSearch (*, Module 9),
and optionally Disjunctive (Module 8, the propagator, the implementation of
edge-finding being optional and * solo teams implementing at least one of the
detectable-precedences and not-first-not-last filtering rules).

If your unit tests time out (and therefore fail) at INGInious for the test method
testOptimality on RCPSP or testFindOptimality on JobShop (or both),
but do not time out (and therefore pass) on your own hardware, then declare so on
your honour in a comment to your submission at Studium and we consider you to
pass those tests also on INGInious.

• Upload also at Studium all *.java (except the *Test.java) mentioned in the
questions, for a local archive at UU.

C. As a team or designated sub-team: Write a report on the problems LNS applied to TSP
(*, Module 6), From TSP to VRP (Module 6), and RCPSP (Module 7):

1



• Evaluate (in the style of Section C of the MiniZinc demo report) each of the models
under a suitable time-out (of at least 10 minutes per instance) in terms of:

– the objective value;

– the runtime in seconds, with 1 decimal place, to proven optimality;

– the number of failures;

for 10 instances that you create from the first 17..26 nodes of data/tsp/tsp 26.txt
(for example, the 5th instance has the first 21 nodes) for both VRP with 3 vehicles
and TSP/LNS, and for all the instances in data/rcpsp for RCPSP.

• Answer all the questions of the LNS applied to TSP programming problem.

D. As a team or designated sub-team, if you wrote the optional propagator of Task B for
Disjunctive (Module 8) and it passes at INGInious.org all your actually targeted unit
tests, then add to your report:

• a high-level description of your design choices;

• a high-level argument for the correctness of your propagator.

Advice will be offered at the help sessions.

If you pass only Tasks A and B, then your score is 3 points. If you pass only Tasks A to C,
then your score is 4 points. If you pass Tasks A to D, then your score is 5 points. In all other
cases, your score is 0 points and there is no grading session. There is no solution session.

References

[1] Laurent Michel, Pierre Schaus, and Pascal Van Hentenryck. MiniCP: A lightweight solver
for constraint programming. Mathematical Programming Computation, 13(1):133–184, 2021.
The source code is available at http://minicp.org and the teaching materials are avail-
able at https://www.edx.org/course/constraint-programming.

Submission Instructions

Use the following to-do list before submitting:

• If you write a report (Tasks C & D): there is no demo report, but remember best practice
on comments for code and on experimental evaluation from Sections B and C of the
MiniZinc demo report and use your best judgement; do not import code into the report.

• Thoroughly proofread, spellcheck, and grammar-check the report, at least once per team-
mate, including the comments in all code. In case you are curious about technical writing:
see the English Style Guide of UU, the technical-writing Check List & Style Manual of
the Optimisation group, common errors in English usage, and common errors in English
usage by native Swedish speakers.

• Produce the report as a single file in PDF format; all other formats will be rejected.

• Remember that when submitting you implicitly certify (a) that your files were produced
solely by your team, except where explicitly stated otherwise and clearly referenced,
(b) that each teammate can individually explain any part starting from the moment of
submitting your files, and (c) that your files are not freely accessible on a public repository.

2

http://minicp.org
https://www.edx.org/course/constraint-programming
https://github.com/Pierre-Flener/Pierre-Flener.github.io/tree/main/courses/COCP/demoReport
https://www.uu.se/en/staff/service-and-tools/communications-and-marketing/style-guides-and-language-support/writing-rules-plain-language-and-accessibility/english-style-guide
https://pierre-flener.github.io/courses/checkList.pdf
https://pierre-flener.github.io/courses/checkList.pdf
https://brians.wsu.edu/common-errors
https://www.crisluengo.net/english-language
https://www.crisluengo.net/english-language


• Submit (by only one of the teammates) the files (all *.java mentioned in the questions,
except the *Test.java, and possibly a report) without folder structure and without
compression via Studium, whose clock may differ from yours, by the given hard deadline.

3


