
SAT/SMT summer school 2015

Introduction to SMT

Alberto Griggio
Fondazione Bruno Kessler – Trento, Italy

Some material courtesy of Roberto Sebastiani and Leonardo de Moura

Outline

Introduction

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories

Quantifiers in DPLL(T)

The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable)
combination of theories , is there an assignment
to the free variables that makes the formula true?

 Example:

The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable)
combination of theories , is there an assignment
to the free variables that makes the formula true?

 Example:

Linear Integer
Arithmetic (LIA)

The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable)
combination of theories , is there an assignment
to the free variables that makes the formula true?

 Example:

Linear Integer
Arithmetic (LIA)

Equality (EUF)

The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable)
combination of theories , is there an assignment
to the free variables that makes the formula true?

 Example:

Linear Integer
Arithmetic (LIA)

Equality (EUF) Arrays (A)

The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable)
combination of theories , is there an assignment
to the free variables that makes the formula true?

 Example:

SMT: some history

The “early days”

 The Simplify theorem prover [Detlefs, Nelson, Saxe]

 The grandfather of SMT solvers

 Efficient decision procedures

 Equality logic + extensions (Congruence Closure)

 Linear arithmetic (Simplex)

 Theory combination (Nelson-Oppen method)

 Quantifiers (E-matching with triggers)

 Inefficient boolean search

SMT: some history - 2

The SAT breakthrough

 late '90s - early 2000: major progress in SAT solvers

 CDCL paradigm: Conflict-Driven Clause-Learning DPLL

 Grasp, (z)Chaff, Berkmin, MiniSat, ...

 combine strengths of model search and proof search
in a single procedure

 Model search: efficient BCP and variable selection heuristics

 Proof search: conflict analysis, non-chronological backtracking,
clause learning

 Smart ideas + clever engineering “tricks”

SMT: some history - 3

From SAT to SMT

 exploit advances in SAT solving for richer logics

 Boolean combinations of constraints over (combinations of)
background theories

 The Eager approach (a.k.a. “bit-blasting”)

 Encode an SMT formula into propositional logic

 Solve with an off-the-shelf efficient SAT solver

 Pioneered by UCLID

 Still the dominant approach for bit-vector arithmetic

SMT: some history - 4

The Lazy approach and DPLL(T) (2002 – 2004)

 (non-trivial) combination of SAT (CDCL) and T-solvers

 SAT-solver enumerates models of boolean skeleton of formula

 Theory solvers check consistency in the theory

 Most popular approach (e.g. Barcelogic, CVC4, MathSAT,
SMTInterpol, Yices, Z3, VeriT, ...)

 Yices 1.0 (2006)

 The first efficient “general-purpose” SMT solver

 Z3 1.0 (2008)

 > 1600 citations, most influential tool paper at TACAS

Outline

Introduction

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories

Quantifiers in DPLL(T)

The lazy approach to SMT

 A theory T is a set of structures (D, I) over a signature :

 D a domain for variables

 I an interpretation for function symbols

The lazy approach to SMT

 A theory T is a set of structures (D, I) over a signature :

 D a domain for variables

 I an interpretation for function symbols

 Deciding the satisfiability of modulo can be reduced
to deciding -satisfiability of conjunctions (sets) of
constraints

 Can exploit efficient decision procedures for sets of constraints,
existing for many important theories

 Naive approach: convert to an equivalent in disjunctive
normal form (DNF), and check each conjunction separately

 Main idea of lazy SMT: use an efficient SAT solver to
enumerate conjuncts without computing the DNF explicitly

A basic approach

 Offline lazy SMT

F = CNF_bool()
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT

A basic approach

 Offline lazy SMT

F = CNF_bool()
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT

Boolean
reasoning

A basic approach

 Offline lazy SMT

F = CNF_bool()
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT

Boolean
reasoning

Theory
reasoning

A basic approach

 Offline lazy SMT

F = CNF_bool()
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT

Boolean
reasoning

Theory
reasoning

Block bad solutions

Example

Example

Example

UNSAT → add and continue

DPLL(T)

 Online approach to lazy SMT

 Tight integration between a CDCL-like SAT solver (“DPLL”)
and the decision procedure for T (“T-solver”), based on:

 T-driven backjumping and learning

 Early pruning

 T-solver incrementality

 T-propagation

 Filtering of assignments to check

 Creation of new T-atoms and T-lemmas “on-demand”

 ...

T-backjumping and T-learning

 When unsat, T-solver can produce reason for inconsistency

 T-conflict set: inconsistent subset of the input constraints

 T-conflict clause given as input to the CDCL conflict analysis

 Drives non-chronological backtracking (backjumping)

 Can be learned by the SAT solver

 The less redundant the T-conflict set, the more search is
saved

 Ideally, should be minimal (irredundant)

 Removing any element makes the set consistent
 But for some theories might be expensive to achieve

 Trade-off between size and cost

Example

Example

T-conflict set

Example

Conflict analysis:

Example

Conflict analysis:

Early pruning

 Invoke T-solver on intermediate assignments, during the
CDCL search

 If unsat is returned, can backtrack immediately

 Advantage: can drastically prune the search tree

 Drawback: possibly many useless (expensive) T-solver calls

SAT

SAT

SAT

SAT

SAT

SAT

SAT

SAT SAT

SAT SAT

SAT

SAT

SAT

UNSAT

UNSAT

UNSAT UNSAT

UNSAT

UNSAT

UNSAT

UNSATUNSAT

UNSATUNSAT

UNSAT

UNSAT

UNSAT

UNSAT UNSAT

WITH EARLY−PRUNING

WITHOUT EARLY−PRUNING
T−solver calls

Early pruning

 Different strategies to call T-solver

 Eagerly, every time a new atom is assigned

 After every round of BCP

 Heuristically, based on some statistics (e.g. effectivenes, …)

 No need of a conclusive answer during early pruning calls

 Can apply approximate checks

 Trade effectiveness for efficiency

 Example: on linear integer arithmetic, solve only the real
relaxation during early pruning calls

Example

Example

SAT

Example

SAT

Example

UNSAT

T-conflict =

T-solver incrementality

 With early pruning, T-solvers invoked very frequently on
similar problems

 Stack of constraints (the assignment stack of CDCL)
incrementally updated

 Incrementality: when a new constraint is added, no need to
redo all the computation “from scratch”

 Backtrackability: support cheap (stack-based) removal of
constraints without “resetting” the internal state

 Crucial for efficiency

 Distinguishing feature for effective integration in DPLL(T)

T-propagation

 T-solvers might support deduction of unassigned constraints

 If early pruning check on M returns sat, T-solver might also return
a set D of unsassigned atoms such that for all

 T-propagation: add each such l to the CDCL stack

 As if BCP was applied to the (T-valid) clause (T-reason)

 But do not compute the T-reason clause explicitly yet

 Lazy explanation: compute T-reason clause only if needed
during conflict analysis

 Like T-conflicts, the less redundant the better

Example

Example

Example

Example

Example

Example

Conflict analysis →
compute

T-reason for

Example

Example

 not involved in
conflict analysis →

 no need to compute
T-reason

Filtering of assignments

 Remove unnecessary literals from current assignment M

 Irrelevant literals: (arbitary, not CNF)

 Ghost literals: occurs only in clauses satisfied by

 Pure literals: and occurs only positively in
 Note: this is not the pure-literal rule of SAT!

 Pros:

 reduce effort for T-solver

 increases the chances of finding a solution

 Cons:

 may weaken the effect of early pruning (esp. with T-propagation)

 may introduce overhead in SAT search

 Typically used for expensive theories

Example

Example

Ghost!

Example

SAT

T-atoms and T-lemmas on demand

 Some T-solvers might need to perform internal case splits to
decide satisfiability

 Example: linear integer arithmetic

 Splitting on-demand: use the SAT solver for case splits

 Encode splits as T-valid clauses (T-lemmas) with fresh T-atoms

 Generated on-the-fly during search, when needed

 Benefits: reuse the efficient SAT search

 simplify the implementation
 exploit advanced search-space exploration techniques

(backjumping, learning, restarts, ...)
 Potential drawback: “pollute” the SAT search

T-atoms and T-lemmas on demand

 T-solver can now return unknown also for complete checks

 In this case, it must also produce one or more T-lemmas

 SAT solver learns the lemmas and continues searching

 eventually, T-solver can decide sat/unsat

 Termination issues

 If SAT solver drops lemmas, might get into an infinite loop

 similar to the Boolean case (and the “basic” SMT case), similar
solution (e.g. monotonically increase # of kept lemmas)

 T-solver can generate an infinite number of new T-atoms!

 For several theories (e.g. linear integer arithmetic, arrays)
enough to draw new T-atoms from a finite set
(dependent on the input problem)

T-solver interface example

class TheorySolver {

 bool tell_atom(Var boolatom, Expr tatom);

 void new_decision_level();
 void backtrack(int level);

 void assume(Lit l);
 lbool check(bool approx);

 void get_conflict(LitList &out);

 Lit get_next_implied();
 bool get_explanation(Lit implied, LitList &out);

 bool get_lemma(LitList &out);

 Expr get_value(Expr term);
};

DPLL(T) example

def DPLL-T():
 while True:
 conflict = False
 if unit_propagation():
 res = T.check(!all_assigned())
 if res == False: conflict = True
 elif res == True: conflict = theory_propagation()
 elif learn_T_lemmas(): continue
 elif !all_assigned(): decide()
 else:
 build_model()
 return SAT
 else: conflict = True
 if conflict:
 lvl, cls = conflict_analysis()
 if lvl < 0: return UNSAT
 else:
 backtrack(lvl)
 learn(cls)

DPLL(T) example

def DPLL-T():
 while True:
 conflict = False
 if unit_propagation():
 res = T.check(!all_assigned())
 if res == False: conflict = True
 elif res == True: conflict = theory_propagation()
 elif learn_T_lemmas(): continue
 elif !all_assigned(): decide()
 else:
 build_model()
 return SAT
 else: conflict = True
 if conflict:
 lvl, cls = conflict_analysis()
 if lvl < 0: return UNSAT
 else:
 backtrack(lvl)
 learn(cls)

call T.assume(lit)

call T.get_next_implied()

call T.get_lemma()

call T.new_decision_level()
 T.assume(lit)

call T.get_value(e)

call T.get_conflict(c)
 T.get_explanation(l, e)

call T.backtrack(lvl)

Outline

Introduction

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories

Quantifiers in DPLL(T)

Equality (EUF)

 Polynomial time O(n log n) congruence closure procedure

 Fully incremental and backtrackable (stack-based)

 Supports efficient T-propagation

 Exhaustive for positive equalities

 Incomplete for disequalities

 Lazy explanations and conflict generation

 Typically used as a “core” T-solver

 Supports efficient extensions, e.g.

 Integer offsets

 Bit-vector slicing and concatenation

Example

Example

Example

Example

Example

Example

Example

Example

get_conflict():

Example

get_conflict():

Example

get_conflict():

Example

get_conflict():

Example

get_conflict():

Example

get_conflict():

Example

get_conflict():

Example

get_conflict():

 Constraints of the form

 Variant of simplex specifically designed for DPLL(T)

 Very efficient backtracking

 Incremental checks

 Cheap deduction of unsassigned literals

 Minimal explanations generation

 Can handle efficiently also strict inequalities

 Rewrite to , treat symbolically
 Worst-case exponential (although LRA is polynomial),

but fast in practice

Linear Rational Arithmetic (LRA)

Simplex for DPLL(T)

Preprocessing:

Tableau of equations (fixed) + bounds (added/removed)

Candidate solution always consistent with the tableau

x
slack 1

x
slack 2

.

.

.
x
slack i

.

.

.
x
slack n

-
l
2

.

.

.
l
i

.

.

.
l
n

u
1

+
.
.
.
u

i

.

.

.
u

n

 

x
slack 1

=
x
slack 2

=
.
.
.

x
slack i

=
.
.
.

x
slack n

=

ai1x1 + ai2x2 + : : :+ aimxm

¯

Simplex for DPLL(T)

Preprocessing:

Tableau of equations (fixed) + bounds (added/removed)

Candidate solution always consistent with the tableau

x
slack 1

x
slack 2

.

.

.
x
slack i

.

.

.
x
slack n

-
l
2

.

.

.
l
i

.

.

.
l
n

u
1

+
.
.
.
u

i

.

.

.
u

n

 

 x
j
=

x
slack 2

=
.
.
.

x
slack i

=
.
.
.

 x
h

=

X

a0ij>0

a0ijxslack j +
X

a0
ik<0

a0ikxslack k

Pivoting steps to make
 satisfy the bounds¯

¯

Simplex for DPLL(T)

Preprocessing:

Tableau of equations (fixed) + bounds (added/removed)

Candidate solution always consistent with the tableau

x
slack 1

x
slack 2

.

.

.
x
slack i

.

.

.
x
slack n

-
l
2

.

.

.
l
i

.

.

.
l
n

u
1

+
.
.
.
u

i

.

.

.
u

n

 

 x
j
=

x
slack 2

=
.
.
.

x
slack i

=
.
.
.

 x
h

=

X

a0ij>0

a0ijxslack j +
X

a0
ik<0

a0ikxslack k

and for the others can
not change  conflict!

¯(xslack i) < li
¯

 l
i
 > x

slack i

¯

Simplex for DPLL(T)

Preprocessing:

Tableau of equations (fixed) + bounds (added/removed)

Candidate solution always consistent with the tableau

x
slack 1

x
slack 2

.

.

.
x

slack i

.

.

.
x

slack n

-
l
2

.

.

.
l
i

.

.

.
l
n

u
1

+
.
.
.
u

i

.

.

.
u

n

 

 x
j
=

x
slack 2

=
.
.
.

x
slack i

=
.
.
.

 x
h

=

X

a0ij>0

a0ijxslack j +
X

a0
ik<0

a0ikxslack k

get_conflict():

for

for

for xslack i

and for the others can
not change  conflict!

¯(xslack i) < li
¯

¯

Linear Integer Arithmetic (LIA)

 NP-complete problem

 Popular approach: simplex + branch and bound

 Approximate checks solve only over the rationals

 In complete checks, force integrality of variables by adding either:

 Branch and bound lemmas
 Cutting plane lemmas

 Inequalities entailed by the current constraints,
excluding only non-integer solutions

 Gomory cuts commonly used
 Using splitting on-demand

 Might also include other specialized sub-solvers for tractable
fragments

 E.g. specialized equational reasoning

Arrays (A)

 Read (rd) and write (wr) operations over arrays

 Equality over array variables (extensionality)

 Example:

 Common approach: reduction to EUF via lazy axiom
instantiation

 read-over-write:

 extensionality:

 Add lemmas on-demand by instantiating the quantified variables
with terms occurring in the input formula

 Using smart “frugal” strategies: check candidate solution,
instantiate only (potentially) violated axioms

Example

EUF solution (equivalence classes):

Example

EUF solution (equivalence classes):

Add violated lemma:

Example

EUF solution (equivalence classes):

Add violated lemma:

EUF solution (equivalence classes):

Example

EUF solution (equivalence classes):

Add violated lemma:

EUF solution (equivalence classes):

Add violated lemma:

Example

EUF solution (equivalence classes):

Add violated lemma:

EUF solution (equivalence classes):

Add violated lemma:

EUF solver returns UNSAT

Bit-vectors (BV)

 Most solvers use an eager approach for BV, not DPLL(T)

 Heavy preprocessing based on rewriting rules + bit-blasting

 Example:

 Alternative: lazy bit-blasting, compatible with DPLL(T)

 Use a second SAT solver as T-solver for BV

 bit-blast only BV-atoms, not the whole formula
 Boolean skeleton of the formula handled by the main SAT solver

 Easier integration with other theories and functionalities based on
a DPLL(T) architecture

 Can integrate additional specialized sub-solvers

 Eager still better performance-wise

Lazy bit-blasting: implementation

 For each BV-atom occurring in the input formula, create a
fresh Boolean “label” variable , and bit-blast to SAT-BV
the formula

 Exploit SAT solving under assumptions

 When the main solver generates the BV-assignment

 Invoke SAT-BV with the assumptions

 If unsat, generate an unsat core of the assumptions

 From its negation, generate a BV-lemma
and send it to the main solver as a blocking clause, like in
standard DPLL(T)

®
l®

(l® $ ®)

®1 : : : ®n

:®i _ : : : _ :®j

Outline

Introduction

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories

Quantifiers in DPLL(T)

Combination of theories

 Very often in practice more than one theory is needed

 Example (from intro):

 How to build solvers for SMT(T
1
 … T

n
) that are both

efficient and modular?

 Can we reuse T
i
-solvers and combine them?

 Under what conditions?

 How do we go from DPLL(T) to DPLL(T
1
 … T

n
)?

The Nelson-Oppen method

 A general technique for combining T
i
-solvers

 Requires:

 T
i
's to have disjoint signatures, i.e. no symbols in common

(other than =)

 T
i
's to be stably-infinite, i.e. every quantifier-free T

i
-satisfiable

formula is satisfiable in an infinite model of T
i

 Examples: EUF, LIA, LRA, A
 Counterexample: BV
 (Extensions exist to deal with some non-stably-infinite theories)

The Nelson-Oppen method

How it works (for)

 Preprocessing purification step on the input formula

 Pure formula: no atom containing symbols of different T
i
's

(except =)

 By labeling subterms

 Example:

The Nelson-Oppen method

How it works (for)

 Preprocessing purification step on the input formula

 Pure formula: no atom containing symbols of different T
i
's

(except =)

 By labeling subterms

 Example:

 T
i
-solvers cooperate by exchanging (disjunctions of)

entailed interface equalities

 I.e., equalities between shared variables

The Nelson-Oppen method

How it works (for)

 Preprocessing purification step on the input formula

 Pure formula: no atom containing symbols of different T
i
's

(except =)

 By labeling subterms

 Example:

 T
i
-solvers cooperate by exchanging (disjunctions of)

entailed interface equalities

 I.e., equalities between shared variables
Interface variables

Example

LIA EUF

Example

LIA EUF

Example

LIA EUF

Example

LIA EUF

Example

LIA EUF

Example

LIA EUF

Example

LIA EUF

No more
deductions possible

 Traditional approach:
a single combined
Nelson-Oppen T-solver

 T
i
-solvers exchange

(disjunctions of) implied
interface equalities
internally

 Interface equalities
invisible to the SAT solver

SAT solver

T1 T2Deduce

Assignment  -lemmaT1 [T2

T1 [T2

 Drawbacks: T
i
-solvers need to:

 be deduction complete for interface equalities
 be able to perform case splits internally

DPLL(T) for combined theories

 Alternative to traditional approach

 Each T
i
-solver interacts directly and only with the SAT solver

 SAT solver takes care of (all or part of) the combination

 Augment the Boolean search space with the possible
interface equalities

 Advantages:

 No need of complete
deduction of interface
equalities

 Case analysis via
splitting on-demand

SAT solver

T1 T2

Assignment

 -lemmaT2 -lemmaT1

Delayed Theory Combination

Delayed theory combination in practice

 Model-based heuristic:

 Initially, no interface equalities generated

 When a solution is found, check against all the possible interface
equalities

 If T
1
 and T

2
 agree on the implied equalities, return SAT

 Otherwise, branch on equalities implied by T
1
-model

but not by T
2
-model

 Optimistic approach, similar to axiom instantiation

 Still allow T
i
-solvers to exchange equalities internally

 But no requirement of completeness

 Avoids “polluting” the SAT space with equality deductions leading
to conflicts

Example

LIA EUF

Example

LIA EUF

LIA-model: EUF-model:

Branch on

Example

LIA EUF

LIA-model: EUF-model:

...

Example

LIA EUF

LIA-model: EUF-model:

...

Outline

Introduction

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories

Quantifiers in DPLL(T)

Motivations

 SMT solvers mostly deal with quantifier-free problems

 Often good compromise between expressiveness and efficiency

 A key factor for the success of SMT

 Yet, in practice it is useful to incorporate some support for
quantifiers

 Examples:

 Support user-provided axioms/assertions

 Axiomatisation of extra theories w/o built-in support

Quantifiers in DPLL(T)

 Assumption: formulas of the form
 quantifier-free

 Can always remove existentials by Skolemization

 Main idea: handle quantifiers via axiom instantiation

 Pick a quantified clause , heuristically instantiate its
variables with quantifier-free terms , and add the
generated clauses to the SAT solver

 terminate when unsat is detected

Quantifiers in DPLL(T)

 Assumption: formulas of the form
 quantifier-free

 Can always remove existentials by Skolemization

 Main idea: handle quantifiers via axiom instantiation

 Pick a quantified clause , heuristically instantiate its
variables with quantifier-free terms , and add the
generated clauses to the SAT solver

 terminate when unsat is detected

 Problems:

 how to choose the relevant instances to add?

 how to detect satisfiable formulas?

E-matching

 Discover relevant instances using the EUF congruence
closure graph (E-graph)

 Given an axiom , an E-graph , a trigger and a
substitution from vars to ground terms:

 is relevant exists such that

 E-matching: for each axiom with trigger

 generate all substitutions s.t.

 generate the axiom instances

 reason modulo equivalence classes in

 discard substitutions that are equivalent modulo

E-matching

 Discover relevant instances using the EUF congruence
closure graph (E-graph)

 Given an axiom , an E-graph , a trigger and a
substitution from vars to ground terms:

 is relevant exists such that

 E-matching: for each axiom with trigger

 generate all substitutions s.t.

 generate the axiom instances

 reason modulo equivalence classes in

 discard substitutions that are equivalent modulo

user-provided or syntactically
determined from

Example

Example

Match with

Add

Example

Match with

Add

Example

Match with

Add

Example

Match with

Add

Because

Example

E-matching: discussion

 Advantages:

 Integrates smoothly with DPLL(T)

 Fast and efficient at finding “shallow” proofs in big formulas

 A typical scenario in SMT-based verification

 However, various drawbacks:

 Can never say sat, but is not even refutationally complete

 Needs ground seeds

 Example:

 Sensitive to bad triggers

 Example:

Model-based Instantiation

 Idea:

 build a model for

 check if satisfies the quantified axioms

 If yes, return sat
otherwise, generate an instance that blocks the bad model

Model-based Instantiation

 Idea:

 build a model for

 check if satisfies the quantified axioms

 If yes, return sat
otherwise, generate an instance that blocks the bad model

 How:

 Use a symbolic representation for , using lambda-terms

 Example:

Model-based Instantiation

 Idea:

 build a model for

 check if satisfies the quantified axioms

 If yes, return sat
otherwise, generate an instance that blocks the bad model

 How:

 Use a symbolic representation for , using lambda-terms

 Example:

 Check unsatisfiability of with SMT

 Example:

Example

Example

 Check

Example

 Check

 Check , i.e.

Example

 Check

 Check , i.e.

 Counterexample:

Example

 Check

 Check , i.e.

 Counterexample:

 Generated instance:

Example

 Check

 Check , i.e.

SAT

Gustav Björdal�

Complete Instantiation

 No hope for a complete procedure in general

 FOL without theories is only semi-decidable...

 ...and in fact undecidable with (some) theories (e.g. LIA)

 However, many decidable fragments exist

 With suitable instantiation strategies, model-based techniques
can be applied effectively

Finite Model Finding

 Idea: search for models interpreting quantified variables over
finite domains

 with finite domain, complete instantiation is possible

 if the domains are small (and the instantiation smart),
might also be practical

 Applicable when quantified vars range over uninterpreted sorts

Finite Model Finding

 Idea: search for models interpreting quantified variables over
finite domains

 with finite domain, complete instantiation is possible

 if the domains are small (and the instantiation smart),
might also be practical

 Applicable when quantified vars range over uninterpreted sorts

 How:

 Add a T-solver for cardinality constraints on uninterpreted sorts

 Use splitting on-demand with card. lemmas
 Tightly integrated with EUF solver

 When “finite” model is found, instantiate exhaustively the axioms

 But avoid redundant instances
 Return sat if a model is found

Example

Example

 Find model for :

Example

 Find model for :

 Try cardinality

Example

 Find model for :

 Try cardinality

 Try cardinality

Example

 Find model for :

 Try cardinality

 Try cardinality

 Generate instances using representatives of equiv. classes

 Check satisfiability of

Example

 Find model for :

 Try cardinality

 Try cardinality

 Generate instances using representatives of equiv. classes

 Check satisfiability of

SAT

Selected bibliography

DISCLAIMER: this is not meant to be complete, just a starting
point. Apologies to missing authors/works

 SMT in general and DPLL(T)

 Nieuwenhuis, Oliveras, Tinelli. Solving SAT and SAT Modulo
Theories: From an abstract Davis--Putnam--Logemann--
Loveland procedure to DPLL(T). J. ACM 2006

 Sebastiani. Lazy Satisfiability Modulo Theories. JSAT 2007

 Barrett, Sebastiani, Seshia, Tinelli. Satisfiability Modulo
Theories. SAT handbook 2009

 Theory solvers

 Detlefs, Nelson, Saxe. Simplify: a theorem prover for program
checking. J. ACM 2005

 Nieuwenhuis, Oliveras. Fast congruence closure and
extensions. Inf. Comput. 2007

Selected bibliography

 Theory solvers (cont'd)

 Dutertre, de Moura. A Fast Linear-Arithmetic Solver for
DPLL(T). CAV 2006

 de Moura, Bjørner. Model-based Theory Combination. Electr.
Notes Theor. Comput. Sci. 2008

 Brummayer, Biere. Lemmas on Demand for the Extensional
Theory of Arrays. JSAT 2009

 de Moura, Bjørner. Generalized, efficient array decision
procedures. FMCAD 2009

 Jovanovic, de Moura. Cutting to the Chase - Solving Linear
Integer Arithmetic. J. Autom. Reasoning 2013

 Hadarean, Bansal, Jovanovic, Barrett, Tinelli. A Tale of Two
Solvers: Eager and Lazy Approaches to Bit-Vectors. CAV
2014

Selected bibliography

 Quantifiers

 de Moura, Bjørner. Efficient E-Matching for SMT Solvers.
CADE 2007

 Ge, de Moura. Complete Instantiation for Quantified
Formulas in Satisfiabiliby Modulo Theories. CAV 2009

 Reynolds, Tinelli, Goel, Krstic. Finite Model Finding in SMT.
CAV 2013

Thank You

