
SAT/SMT summer school 2015

Introduction to SMT

Alberto Griggio
Fondazione Bruno Kessler – Trento, Italy

Some material courtesy of Roberto Sebastiani and Leonardo de Moura

Outline

Introduction

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories

Quantifiers in DPLL(T)

■ Satisfiability Modulo Theories

- Given a (quantifier-free) FOL formula and a (decidable) combination of theories $\mathcal{T}_1 \cup \dots \cup \mathcal{T}_m$, is there an assignment to the free variables x_1, \dots, x_n that makes the formula true?
- Example:

$$\varphi \stackrel{\text{def}}{=} (x_1 \geq 0) \wedge (x_1 < 1) \wedge ((f(x_1) = f(0)) \rightarrow (\text{rd}(\text{wr}(P, x_2, x_3), x_2 + x_1) = x_3 + 1))$$

The SMT problem

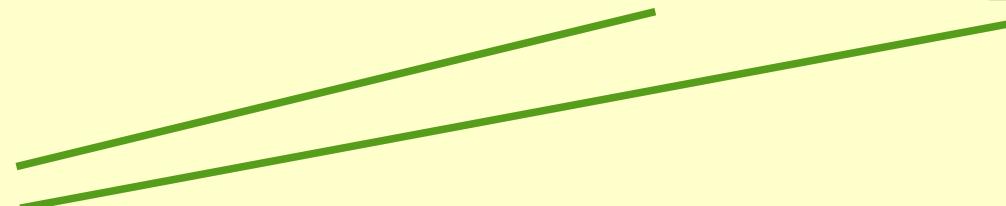
■ Satisfiability Modulo Theories

- Given a (quantifier-free) FOL formula and a (decidable) combination of theories $\mathcal{T}_1 \cup \dots \cup \mathcal{T}_m$, is there an assignment to the free variables x_1, \dots, x_n that makes the formula true?

- Example:

$$\varphi \stackrel{\text{def}}{=} (x_1 \geq 0) \wedge (x_1 < 1) \wedge ((f(x_1) \neq f(0)) \rightarrow (\text{rd}(\text{wr}(P, x_2, x_3), x_2 + x_1) = x_3 + 1))$$

Linear Integer
Arithmetic (LIA)



The SMT problem

■ Satisfiability Modulo Theories

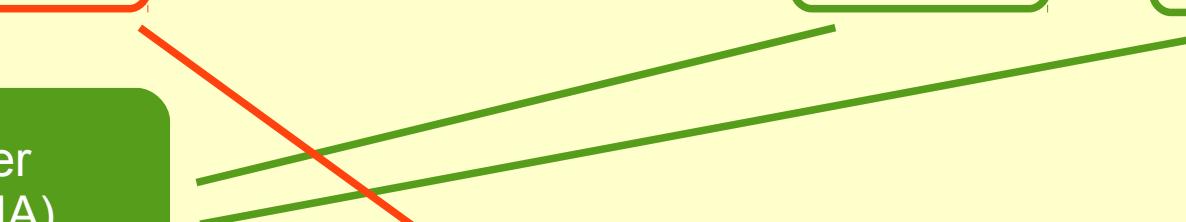
- Given a (quantifier-free) FOL formula and a (decidable) combination of theories $\mathcal{T}_1 \cup \dots \cup \mathcal{T}_m$, is there an assignment to the free variables x_1, \dots, x_n that makes the formula true?

■ Example:

$$\varphi \stackrel{\text{def}}{=} (x_1 \geq 0) \wedge (x_1 < 1) \wedge ((f(x_1) \neq f(0)) \rightarrow (\text{rd}(\text{wr}(P, x_2, x_3), x_2 + x_1) = x_3 + 1))$$

Linear Integer
Arithmetic (LIA)

Equality (EUF)



The SMT problem

Satisfiability Modulo Theories

- Given a (quantifier-free) FOL formula and a (decidable) combination of theories $\mathcal{T}_1 \cup \dots \cup \mathcal{T}_m$, is there an assignment to the free variables x_1, \dots, x_n that makes the formula true?

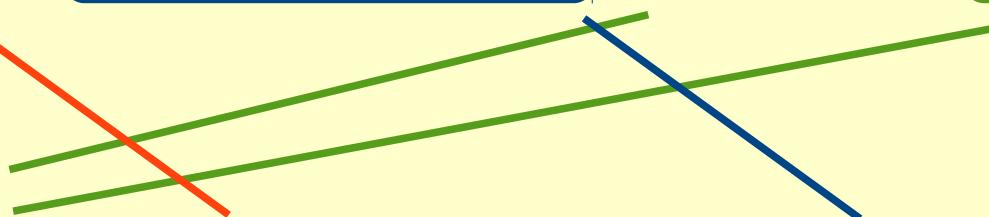
- Example:

$$\varphi \stackrel{\text{def}}{=} (x_1 \geq 0) \wedge (x_1 < 1) \wedge ((f(x_1) = f(0)) \rightarrow (\text{rd}(\text{wr}(P, x_2, x_3), x_2 + x_1) = x_3 + 1))$$

Linear Integer
Arithmetic (LIA)

Equality (EUF)

Arrays (A)



The SMT problem

■ Satisfiability Modulo Theories

- Given a (quantifier-free) FOL formula and a (decidable) combination of theories $\mathcal{T}_1 \cup \dots \cup \mathcal{T}_m$, is there an assignment to the free variables x_1, \dots, x_n that makes the formula true?

■ Example:

$$\varphi \stackrel{\text{def}}{=} (x_1 \geq 0) \wedge (x_1 < 1) \wedge ((f(x_1) = f(0)) \rightarrow (\text{rd}(\text{wr}(P, x_2, x_3), x_2 + x_1) = x_3 + 1))$$

$$\text{LIA} \models (x_1 = 0)$$

$$\text{EUF} \models f(x_1) = f(0)$$

$$\text{A} \models \text{rd}(\text{wr}(P, x_2, x_3), x_2) = x_3$$

$$\text{Bool} \models \text{rd}(\text{wr}(P, x_2, x_3), x_2 + x_1) = x_3 + 1$$

$$\text{LIA} \models \perp$$

The “early days”

- **The Simplify theorem prover [Detlefs, Nelson, Saxe]**
 - The grandfather of SMT solvers
- **Efficient decision procedures**
 - Equality logic + extensions ([Congruence Closure](#))
 - Linear arithmetic ([Simplex](#))
 - Theory combination ([Nelson-Oppen method](#))
 - Quantifiers (E-matching with triggers)
- **Inefficient boolean search**

The SAT breakthrough

- late '90s - early 2000: major progress in SAT solvers
- CDCL paradigm: Conflict-Driven Clause-Learning DPLL
 - Grasp, (z)Chaff, Berkmin, MiniSat, ...
- combine strengths of **model search** and **proof search** in a single procedure
 - **Model search**: efficient BCP and variable selection heuristics
 - **Proof search**: conflict analysis, non-chronological backtracking, clause learning
- Smart ideas + clever engineering “tricks”

From SAT to SMT

- **exploit advances in SAT solving for richer logics**
 - Boolean combinations of constraints over (combinations of) background theories
- **The Eager approach** (a.k.a. “bit-blasting”)
 - Encode an SMT formula into propositional logic
 - Solve with an off-the-shelf efficient SAT solver
 - Pioneered by **UCLID**
 - Still the dominant approach for bit-vector arithmetic

The Lazy approach and DPLL(T) (2002 – 2004)

- **(non-trivial) combination of SAT (CDCL) and T-solvers**
 - SAT-solver enumerates models of boolean skeleton of formula
 - Theory solvers check consistency in the theory
 - Most popular approach (e.g. Barcelogic, CVC4, MathSAT, SMTInterpol, Yices, Z3, VeriT, ...)
- **Yices 1.0 (2006)**
 - The first efficient “general-purpose” SMT solver
- **Z3 1.0 (2008)**
 - > 1600 citations, most influential tool paper at TACAS

Outline

Introduction

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories

Quantifiers in DPLL(T)

The lazy approach to SMT

- A theory T is a set of structures (D, I) over a signature Σ :
 - D a **domain** for variables
 - I an **interpretation** for function symbols $I(f) : D^n \mapsto D$

The lazy approach to SMT

- A theory T is a set of structures (D, I) over a signature Σ :
 - D a **domain** for variables
 - I an **interpretation** for function symbols $I(f) : D^n \mapsto D$
- Deciding the satisfiability of φ modulo \mathcal{T} can be reduced to deciding \mathcal{T} -satisfiability of **conjunctions (sets) of constraints**
 - Can exploit efficient decision procedures for sets of constraints, existing for many important theories
- **Naive approach:** convert φ to an equivalent φ' in **disjunctive normal form** (DNF), and check each conjunction separately
- Main idea of **lazy SMT**: use an efficient SAT solver to **enumerate** conjuncts without computing the DNF explicitly

A basic approach

■ Offline lazy SMT

```
F = CNF_bool(  $\varphi$  )
while true:
    res, M = check_SAT(F)
    if res == true:
        M' = to_T(M)
        res = check_T(M')
        if res == true:
            return SAT
        else:
            F += !M
    else:
        return UNSAT
```

A basic approach

■ Offline lazy SMT

```
F = CNF_bool(  $\varphi$  )
while true:
    res, M = check_SAT(F)
    if res == true:
        M' = to_T(M)
        res = check_T(M')
        if res == true:
            return SAT
        else:
            F += !M
    else:
        return UNSAT
```

Boolean
reasoning

A basic approach

■ Offline lazy SMT

```

F = CNF_bool(  $\varphi$  )
while true:
    res, M = check_SAT(F)
    if res == true:
        M' = to_T(M)
        res = check_T(M')
        if res == true:
            return SAT
    else:
        F += !M
else:
    return UNSAT
  
```

Boolean
reasoning

Theory
reasoning

A basic approach

■ Offline lazy SMT

```

F = CNF_bool(  $\varphi$  )
while true:
    res, M = check_SAT(F)
    if res == true:
        M' = to_T(M)
        res = check_T(M')
        if res == true:
            return SAT
        else:
            F += !M
    else:
        return UNSAT
  
```

Boolean
reasoning

Theory
reasoning

Block bad solutions

Example

$$\begin{array}{lll} \varphi & \stackrel{\text{def}}{=} & \varphi^{\text{Bool}} \stackrel{\text{def}}{=} \\ c_1 : & (2x_2 - x_3 > 2) \vee P_1 & A_1 \vee P_1 \\ c_2 : & \neg P_2 \vee (x_1 - x_5 \leq 1) & \neg P_2 \vee A_2 \\ c_3 : & \neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 & \neg A_3 \vee \neg P_2 \\ c_4 : & \neg(3x_1 - x_3 \leq 6) \vee \neg P_1 & \neg A_4 \vee \neg P_1 \\ c_5 : & P_1 \vee (3x_1 - 2x_2 \leq 3) & P_1 \vee A_3 \\ c_6 : & (x_2 - x_4 \leq 6) \vee \neg P_1 & A_5 \vee \neg P_1 \\ c_7 : & P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 & P_1 \vee A_6 \vee \neg P_2 \end{array}$$

Example

$$\begin{array}{ll}
 \varphi & \stackrel{\text{def}}{=} \varphi^{\text{Bool}} \stackrel{\text{def}}{=} \\
 c_1 : & (2x_2 - x_3 > 2) \vee P_1 & A_1 \vee \color{red}{P_1} \\
 c_2 : & \neg P_2 \vee (x_1 - x_5 \leq 1) & \neg P_2 \vee \color{red}{A_2} \\
 c_3 : & \neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 & \neg \color{red}{A_3} \vee \neg P_2 \\
 c_4 : & \neg(3x_1 - x_3 \leq 6) \vee \neg P_1 & \neg \color{red}{A_4} \vee \neg P_1 \\
 c_5 : & P_1 \vee (3x_1 - 2x_2 \leq 3) & \color{red}{P_1} \vee A_3 \\
 c_6 : & (x_2 - x_4 \leq 6) \vee \neg P_1 & \color{red}{A_5} \vee \neg P_1 \\
 c_7 : & P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 & \color{red}{P_1} \vee \color{red}{A_6} \vee \neg P_2
 \end{array}$$

$$M = \{P_1, P_2, \neg A_1, A_2, \neg A_3, \neg A_4, A_5, A_6\}$$

$$\begin{aligned}
 M' = \{ & \neg(2x_2 - x_3 > 2), (x_1 - x_5 \leq 1), \neg(3x_1 - 2x_2 \leq 3), \\
 & \neg(3x_1 - x_3 \leq 6), (x_2 - x_4 \leq 6), (x_3 = 3x_5 + 4) \}
 \end{aligned}$$

Example

$$\begin{array}{ll}
 \varphi & \stackrel{\text{def}}{=} \varphi^{\text{Bool}} \\
 c_1 : & (2x_2 - x_3 > 2) \vee P_1 & A_1 \vee \color{red}{P_1} \\
 c_2 : & \neg P_2 \vee (x_1 - x_5 \leq 1) & \neg P_2 \vee \color{red}{A_2} \\
 c_3 : & \neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 & \neg \color{red}{A_3} \vee \neg P_2 \\
 c_4 : & \neg(3x_1 - x_3 \leq 6) \vee \neg P_1 & \neg \color{red}{A_4} \vee \neg P_1 \\
 c_5 : & P_1 \vee (3x_1 - 2x_2 \leq 3) & \color{red}{P_1} \vee A_3 \\
 c_6 : & (x_2 - x_4 \leq 6) \vee \neg P_1 & \color{red}{A_5} \vee \neg P_1 \\
 c_7 : & P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 & \color{red}{P_1} \vee \color{red}{A_6} \vee \neg P_2
 \end{array}$$

$$M = \{P_1, P_2, \neg A_1, A_2, \neg A_3, \neg A_4, A_5, A_6\}$$

$$\begin{aligned}
 M' = \{ & \neg(2x_2 - x_3 > 2), (x_1 - x_5 \leq 1), \neg(3x_1 - 2x_2 \leq 3), \\
 & \neg(3x_1 - x_3 \leq 6), (x_2 - x_4 \leq 6), (x_3 = 3x_5 + 4) \}
 \end{aligned}$$

$$\frac{\neg(3x_1 - 3x_5 - 4 \leq 6) \mapsto \neg(x_1 - x_5 \leq 10/3) \mapsto (x_1 - x_5 > 10/3)}{\quad}$$

UNSAT → add $\neg M$ and continue

- **Online** approach to lazy SMT
- **Tight integration** between a CDCL-like SAT solver (“DPLL”) and the decision procedure for T (“T-solver”), based on:
 - T -driven backjumping and learning
 - Early pruning
 - T -solver incrementality
 - T -propagation
 - Filtering of assignments to check
 - Creation of new T -atoms and T -lemmas “on-demand”
 - ...

T -backjumping and T -learning

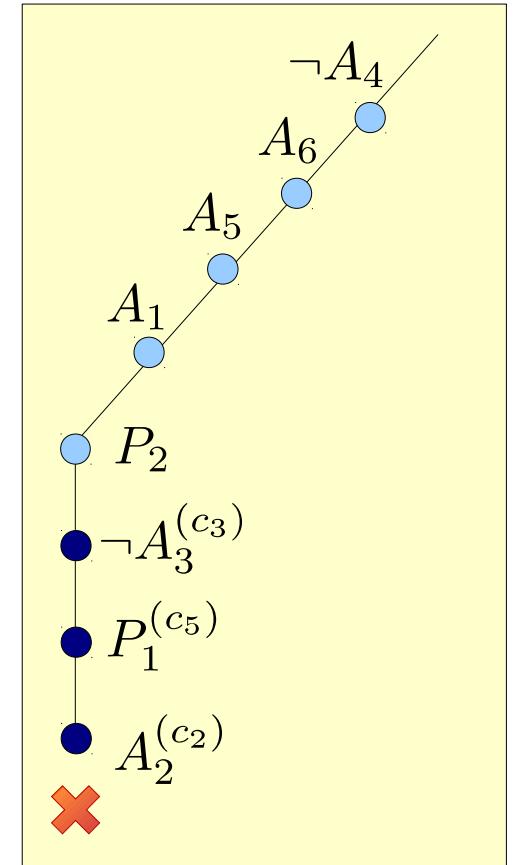
- When unsat, T -solver can produce **reason for inconsistency**
 - **T -conflict set**: inconsistent subset of the input constraints
- T -conflict clause given as input to the CDCL **conflict analysis**
 - Drives non-chronological backtracking (backjumping)
 - Can be learned by the SAT solver
- The less redundant the T -conflict set, the more search is saved
 - Ideally, should be **minimal** (irredundant)
 - Removing any element makes the set consistent
 - But for some theories might be expensive to achieve
 - Trade-off between size and cost

Example

$$\begin{array}{ll}
 \varphi & \stackrel{\text{def}}{=} \varphi^{\text{Bool}} \\
 c_1 : & (2x_2 - x_3 > 2) \vee P_1 & A_1 \vee P_1 \\
 c_2 : & \neg P_2 \vee (x_1 - x_5 \leq 1) & \neg P_2 \vee A_2 \\
 c_3 : & \neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 & \neg A_3 \vee \neg P_2 \\
 c_4 : & \neg(3x_1 - x_3 \leq 6) \vee \neg P_1 & \neg A_4 \vee \neg P_1 \\
 c_5 : & P_1 \vee (3x_1 - 2x_2 \leq 3) & P_1 \vee A_3 \\
 c_6 : & (x_2 - x_4 \leq 6) \vee \neg P_1 & A_5 \vee \neg P_1 \\
 c_7 : & P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 & P_1 \vee A_6 \vee \neg P_2
 \end{array}$$

$$M = [\neg A_4, A_6, A_5, A_1, P_2, \neg A_3, P_1, A_2]$$

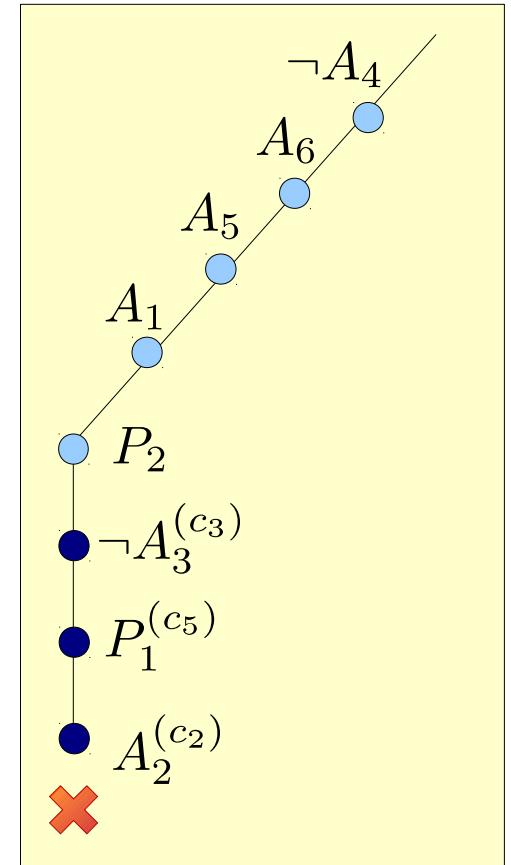
$$\begin{aligned}
 M' = \{ & \neg(3x_1 - x_3 \leq 6), (x_3 = 3x_5 + 4), (x_2 - x_4 \leq 6), \\
 & \neg(2x_2 - x_3 > 2), \neg(3x_1 - 2x_2 \leq 3), (x_1 - x_5 \leq 1) \}
 \end{aligned}$$



Example

$$\begin{array}{ccl}
\varphi & \stackrel{\text{def}}{=} & \varphi \\
c_1 : & (2x_2 - x_3 > 2) \vee P_1 & \\
c_2 : & \neg P_2 \vee (x_1 - x_5 \leq 1) & \\
c_3 : & \neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 & \\
c_4 : & \neg(3x_1 - x_3 \leq 6) \vee \neg P_1 & \\
c_5 : & P_1 \vee (3x_1 - 2x_2 \leq 3) & \\
c_6 : & (x_2 - x_4 \leq 6) \vee \neg P_1 & \\
c_7 : & P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 &
\end{array}$$

$$\begin{aligned}
\varphi^{\text{Bool}} &\stackrel{\text{def}}{=} \\
&A_1 \vee P_1 \\
&\neg P_2 \vee A_2 \\
&\neg A_3 \vee \neg P_2 \\
&\neg A_4 \vee \neg P_1 \\
&P_1 \vee A_3 \\
&A_5 \vee \neg P_1 \\
&P_2 \vee A_6 \vee \neg P_2
\end{aligned}$$



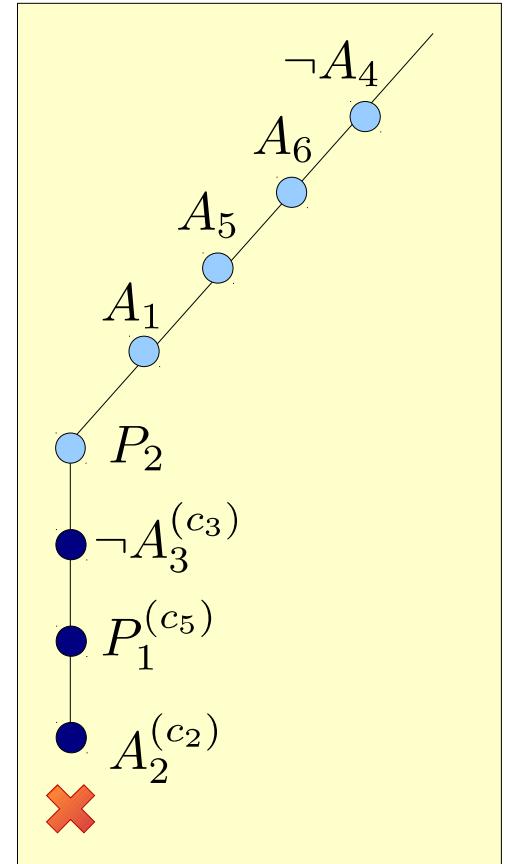
$$M = [\neg A_4, A_6, A_5, A_1, P_2, \neg A_3, P_1, A_2]$$

$$M' = \{ \neg(3x_1 - x_3 \leq 6), (x_3 = 3x_5 + 4), (x_2 - x_4 \leq 6), \neg(2x_2 - x_3 > 2), \neg(3x_1 - 2x_2 \leq 3), (x_1 - x_5 \leq 1) \}$$

T-conflict set

Example

$$\begin{array}{lcl}
\varphi & \stackrel{\text{def}}{=} & \varphi^{\text{Bool}} \stackrel{\text{def}}{=} \\
c_1 : & (2x_2 - x_3 > 2) \vee P_1 & A_1 \vee P_1 \\
c_2 : & \neg P_2 \vee (x_1 - x_5 \leq 1) & \neg P_2 \vee A_2 \\
c_3 : & \neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 & \neg A_3 \vee \neg P_2 \\
c_4 : & \neg(3x_1 - x_3 \leq 6) \vee \neg P_1 & \neg A_4 \vee \neg P_1 \\
c_5 : & P_1 \vee (3x_1 - 2x_2 \leq 3) & P_1 \vee A_3 \\
c_6 : & (x_2 - x_4 \leq 6) \vee \neg P_1 & A_5 \vee \neg P_1 \\
c_7 : & P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 & P_1 \vee A_6 \vee \neg P_2
\end{array}$$

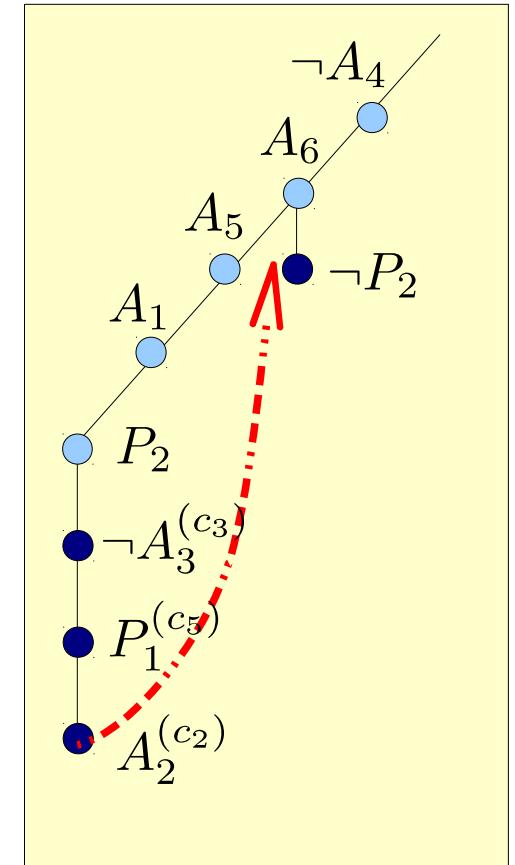


Conflict analysis:

$$\frac{\overbrace{A_4 \vee \neg A_6 \vee \neg A_2}^{\text{T-conflict clause}} \quad \overbrace{\neg P_2 \vee A_2}^{c_2}}{A_4 \vee \neg A_6 \vee \neg P_2}$$

Example

$$\begin{array}{lcl}
 \varphi & \stackrel{\text{def}}{=} & \varphi^{\text{Bool}} \stackrel{\text{def}}{=} \\
 c_1 : & (2x_2 - x_3 > 2) \vee P_1 & A_1 \vee P_1 \\
 c_2 : & \neg P_2 \vee (x_1 - x_5 \leq 1) & \neg P_2 \vee A_2 \\
 c_3 : & \neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 & \neg A_3 \vee \neg P_2 \\
 c_4 : & \neg(3x_1 - x_3 \leq 6) \vee \neg P_1 & \neg A_4 \vee \neg P_1 \\
 c_5 : & P_1 \vee (3x_1 - 2x_2 \leq 3) & P_1 \vee A_3 \\
 c_6 : & (x_2 - x_4 \leq 6) \vee \neg P_1 & A_5 \vee \neg P_1 \\
 c_7 : & P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 & P_1 \vee A_6 \vee \neg P_2 \\
 c_8 : & A_4 \vee \neg A_6 \vee \neg P_2 &
 \end{array}$$

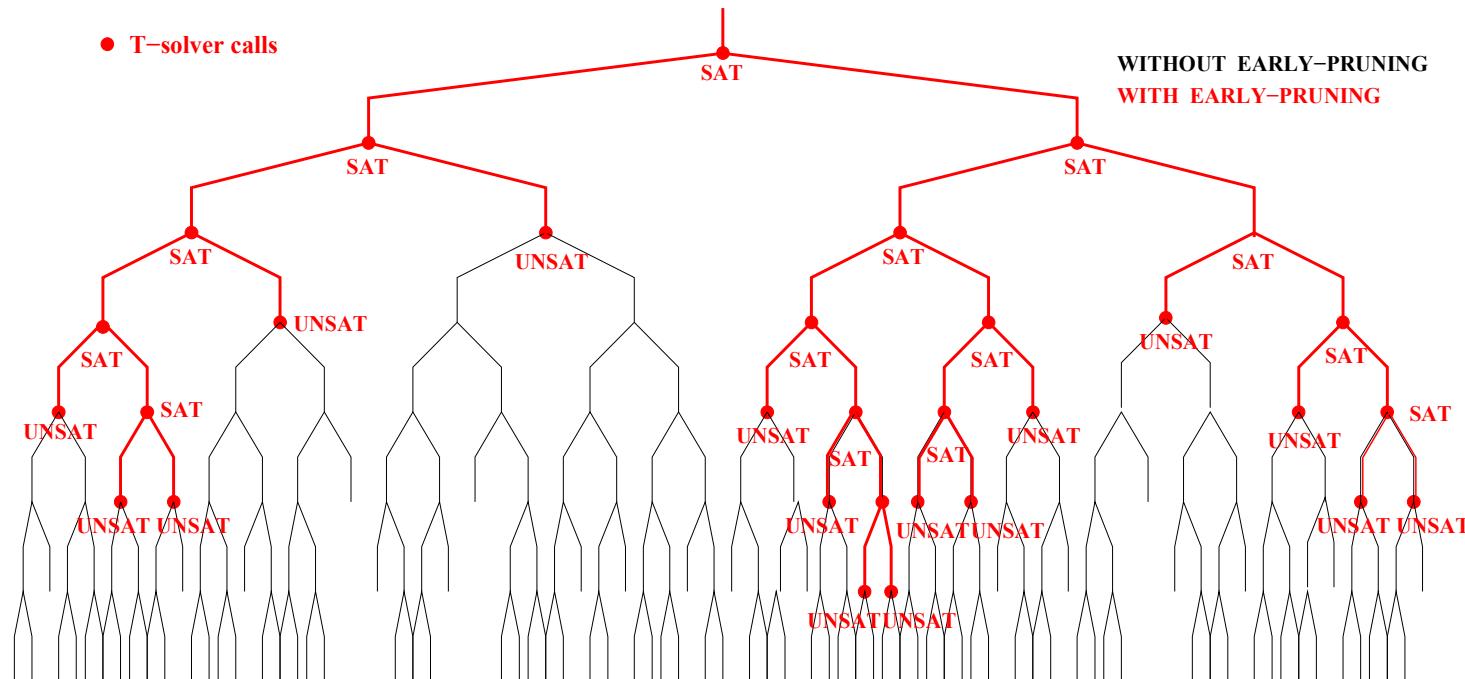


Conflict analysis:

$$\frac{\overbrace{A_4 \vee \neg A_6 \vee \neg A_2}^{\text{T-conflict clause}} \quad \overbrace{\neg P_2 \vee A_2}^{c_2}}{A_4 \vee \neg A_6 \vee \neg P_2}$$

Early pruning

- Invoke T -solver on **intermediate assignments**, during the CDCL search
 - If **unsat** is returned, can backtrack immediately
- **Advantage:** can drastically prune the search tree
- **Drawback:** possibly many **useless (expensive) T -solver calls**

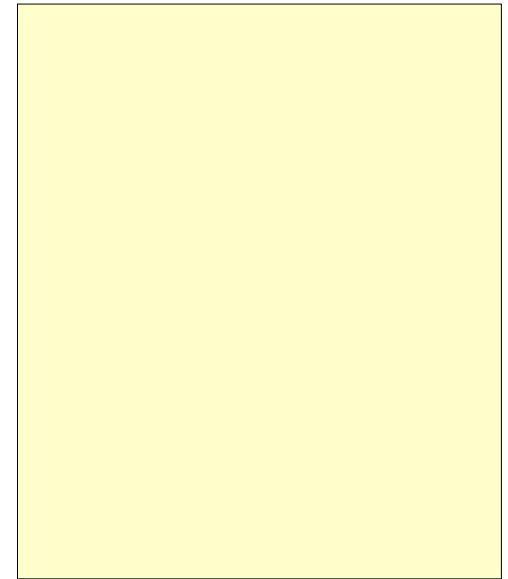


Early pruning

- Different strategies to call T -solver
 - Eagerly, every time a new atom is assigned
 - After every round of BCP
 - Heuristically, based on some statistics (e.g. effectiveness, ...)
 - **No need of a conclusive answer** during early pruning calls
 - Can apply **approximate checks**
 - Trade effectiveness for efficiency
- **Example:** on linear integer arithmetic, solve only the real relaxation during early pruning calls

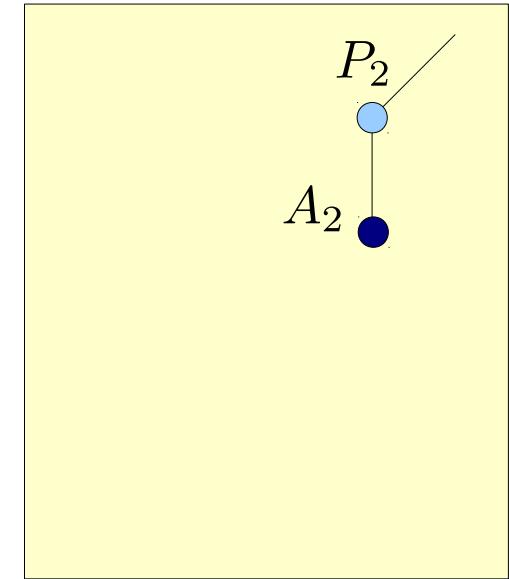
Example

φ	$\stackrel{\text{def}}{=}$	φ^{Bool}	$\stackrel{\text{def}}{=}$
$c_1 :$	$(2x_2 - x_3 > 2) \vee P_1$		$A_1 \vee P_1$
$c_2 :$	$\neg P_2 \vee (x_1 - x_5 \leq 1)$		$\neg P_2 \vee A_2$
$c_3 :$	$\neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2$		$\neg A_3 \vee \neg P_2$
$c_4 :$	$\neg(3x_1 - x_3 \leq 6) \vee \neg P_1$		$\neg A_4 \vee \neg P_1$
$c_5 :$	$P_1 \vee (3x_1 - 2x_2 \leq 3)$		$P_1 \vee A_3$
$c_6 :$	$(x_2 - x_4 \leq 6) \vee \neg P_1$		$A_5 \vee \neg P_1$
$c_7 :$	$P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2$		$P_1 \vee A_6 \vee \neg P_2$



Example

$$\begin{array}{ll}
 \varphi & \stackrel{\text{def}}{=} \varphi^{\text{Bool}} \\
 c_1 : & (2x_2 - x_3 > 2) \vee P_1 & \stackrel{\text{def}}{=} \\
 c_2 : & \neg P_2 \vee (x_1 - x_5 \leq 1) & A_1 \vee P_1 \\
 c_3 : & \neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 & \neg P_2 \vee A_2 \\
 c_4 : & \neg(3x_1 - x_3 \leq 6) \vee \neg P_1 & \neg A_3 \vee \neg P_2 \\
 c_5 : & P_1 \vee (3x_1 - 2x_2 \leq 3) & \neg A_4 \vee \neg P_1 \\
 c_6 : & (x_2 - x_4 \leq 6) \vee \neg P_1 & P_1 \vee A_3 \\
 c_7 : & P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 & A_5 \vee \neg P_1 \\
 & & P_1 \vee A_6 \vee \neg P_2
 \end{array}$$



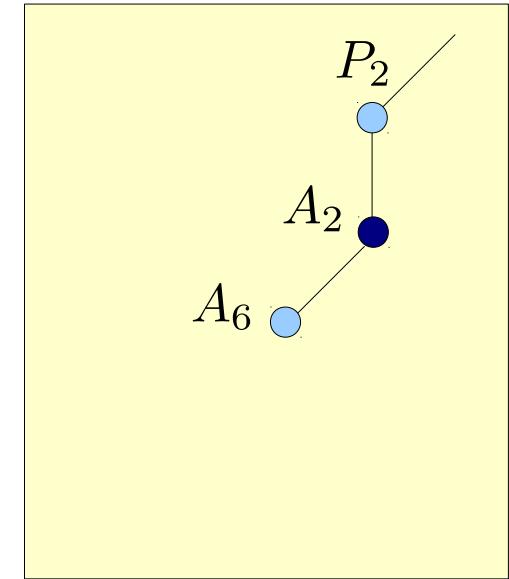
$$M = [P_2, A_2]$$

SAT

Example

$$\begin{aligned}
 \varphi &\stackrel{\text{def}}{=} \\
 c_1 : &(2x_2 - x_3 > 2) \vee P_1 \\
 c_2 : &\neg P_2 \vee (x_1 - x_5 \leq 1) \\
 c_3 : &\neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 \\
 c_4 : &\neg(3x_1 - x_3 \leq 6) \vee \neg P_1 \\
 c_5 : &P_1 \vee (3x_1 - 2x_2 \leq 3) \\
 c_6 : &(x_2 - x_4 \leq 6) \vee \neg P_1 \\
 c_7 : &P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2
 \end{aligned}$$

$$\begin{aligned}
 \varphi^{\text{Bool}} &\stackrel{\text{def}}{=} \\
 A_1 \vee P_1 & \\
 \neg P_2 \vee A_2 & \\
 \neg A_3 \vee \neg P_2 & \\
 \neg A_4 \vee \neg P_1 & \\
 P_1 \vee A_3 & \\
 A_5 \vee \neg P_1 & \\
 P_1 \vee A_6 \vee \neg P_2 &
 \end{aligned}$$



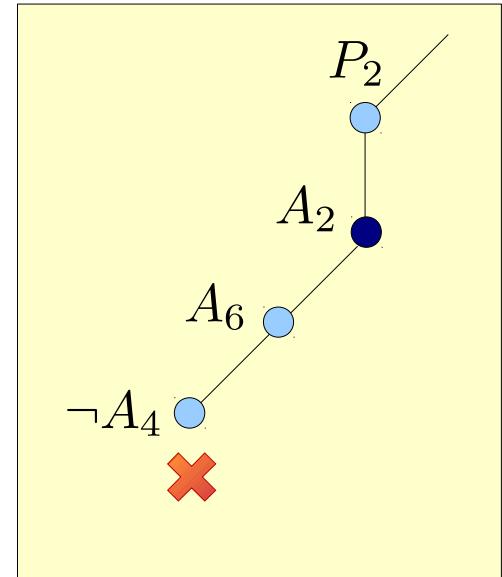
$$M = [P_2, A_2, A_6]$$

SAT

Example

$$\begin{aligned}
 \varphi &\stackrel{\text{def}}{=} \\
 c_1 : &(2x_2 - x_3 > 2) \vee P_1 \\
 c_2 : &\neg P_2 \vee (x_1 - x_5 \leq 1) \\
 c_3 : &\neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 \\
 c_4 : &\neg(3x_1 - x_3 \leq 6) \vee \neg P_1 \\
 c_5 : &P_1 \vee (3x_1 - 2x_2 \leq 3) \\
 c_6 : &(x_2 - x_4 \leq 6) \vee \neg P_1 \\
 c_7 : &P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2
 \end{aligned}$$

$$\begin{aligned}
 \varphi^{\text{Bool}} &\stackrel{\text{def}}{=} \\
 A_1 \vee P_1 & \\
 \neg P_2 \vee A_2 & \\
 \neg A_3 \vee \neg P_2 & \\
 \neg A_4 \vee \neg P_1 & \\
 P_1 \vee A_3 & \\
 A_5 \vee \neg P_1 & \\
 P_1 \vee A_6 \vee \neg P_2 &
 \end{aligned}$$



$$M = [P_2, A_2, A_6, \neg A_4]$$

UNSAT

T-conflict = $\{\neg(3x_1 - x_3 \leq 6), (x_3 = 3x_5 + 4), (x_1 - x_5 \leq 1)\}$

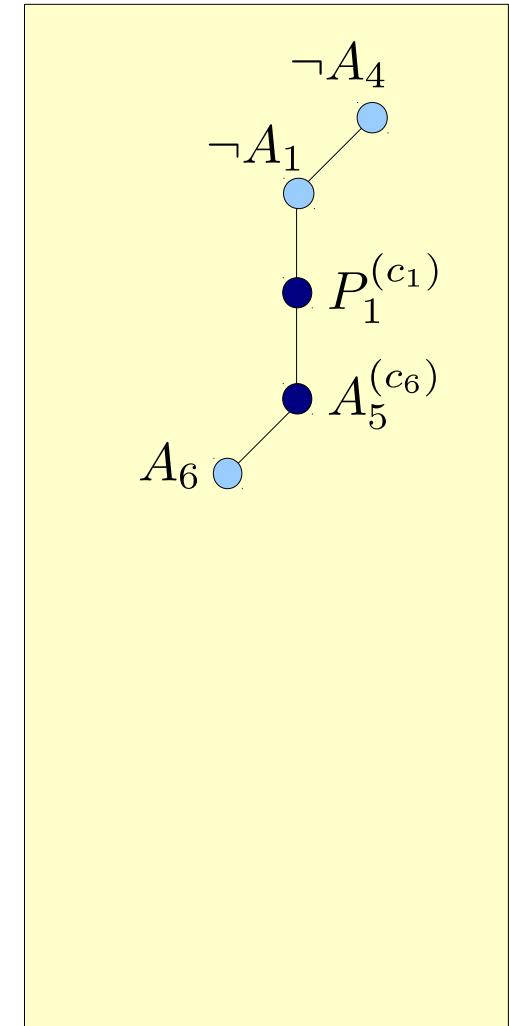
- With early pruning, *T*-solvers invoked **very frequently** on **similar** problems
 - **Stack** of constraints (the assignment stack of CDCL) **incrementally updated**
- **Incrementality**: when a new constraint is added, no need to redo all the computation “from scratch”
- **Backtrackability**: support cheap (stack-based) removal of constraints without “resetting” the internal state
- **Crucial for efficiency**
 - Distinguishing feature for effective integration in DPLL(*T*)

- T-solvers might support **deduction** of unassigned constraints
 - If early pruning check on M returns **sat**, T-solver might also return a set D of **unsassigned atoms** such that $M \models_{\mathcal{T}} l$ for all $l \in D$
- **T-propagation:** add each such l to the CDCL stack
 - As if BCP was applied to the (T -valid) clause $\neg M \vee l$ (**T -reason**)
 - But **do not compute the T -reason clause** explicitly yet
- **Lazy explanation:** compute T -reason clause **only if needed** during **conflict analysis**
 - Like T -conflicts, the less redundant the better

Example

$$\begin{array}{lcl}
 \varphi & \stackrel{\text{def}}{=} & \varphi^{\text{Bool}} \stackrel{\text{def}}{=} \\
 c_1 : & (2x_2 - x_3 > 2) \vee P_1 & A_1 \vee P_1 \\
 c_2 : & \neg P_2 \vee (x_1 - x_5 \leq 1) & \neg P_2 \vee A_2 \\
 c_3 : & \neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 & \neg A_3 \vee \neg P_2 \\
 c_4 : & \neg(3x_1 - x_3 \leq 6) \vee \neg P_1 & \neg A_4 \vee \neg P_1 \\
 c_5 : & P_1 \vee (3x_1 - 2x_2 \leq 3) & P_1 \vee A_3 \\
 c_6 : & (x_2 - x_4 \leq 6) \vee \neg P_1 & A_5 \vee \neg P_1 \\
 c_7 : & P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 & P_1 \vee A_6 \vee \neg P_2 \\
 c_8 : & P_2 \vee (2x_2 - 3x_1 \geq 5) \vee & P_2 \vee A_7 \vee A_8 \\
 & (x_3 + x_5 - 4x_1 \geq 0) &
 \end{array}$$

$$M = [\neg A_4, \neg A_1, P_1, A_5, A_6]$$



Example

$$\begin{aligned}
\varphi &\stackrel{\text{def}}{=} \varphi \\
c_1 : & (2x_2 - x_3 > 2) \vee P_1 \\
c_2 : & \neg P_2 \vee (x_1 - x_5 \leq 1) \\
c_3 : & \neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 \\
c_4 : & \neg(3x_1 - x_3 \leq 6) \vee \neg P_1 \\
c_5 : & P_1 \vee (3x_1 - 2x_2 \leq 3) \\
c_6 : & (x_2 - x_4 \leq 6) \vee \neg P_1 \\
c_7 : & P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 \\
c_8 : & P_2 \vee (2x_2 - 3x_1 \geq 5) \vee \\
& (x_3 + x_5 - 4x_1 \geq 0)
\end{aligned}$$

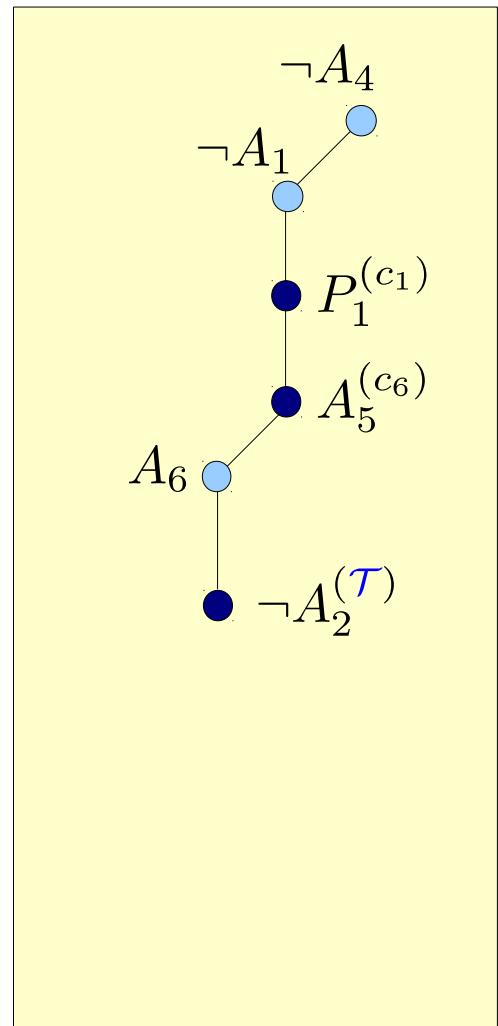
$$\begin{aligned}
\varphi^{\text{Bool}} &\stackrel{\text{def}}{=} \\
&A_1 \vee P_1 \\
&\neg P_2 \vee A_2 \\
&\neg A_3 \vee \neg P_2 \\
&\neg A_4 \vee \neg P_1 \\
&P_1 \vee A_3 \\
&A_5 \vee \neg P_1 \\
&P_2 \\
&P_1 \vee A_6 \vee \neg P_2 \\
&P_2 \vee A_7 \vee A_8
\end{aligned}$$

$$M = [\neg A_4, \neg A_1, P_1, A_5, A_6]$$

$\neg(3x_1 - x_3 \leq 6)$ $(x_3 = 3x_5 + 4)$

$$\neg(3x_1 - 3x_5 \leq 10)$$

$$\neg(x_1 - x_5 \leq 1) \equiv \neg A_2$$

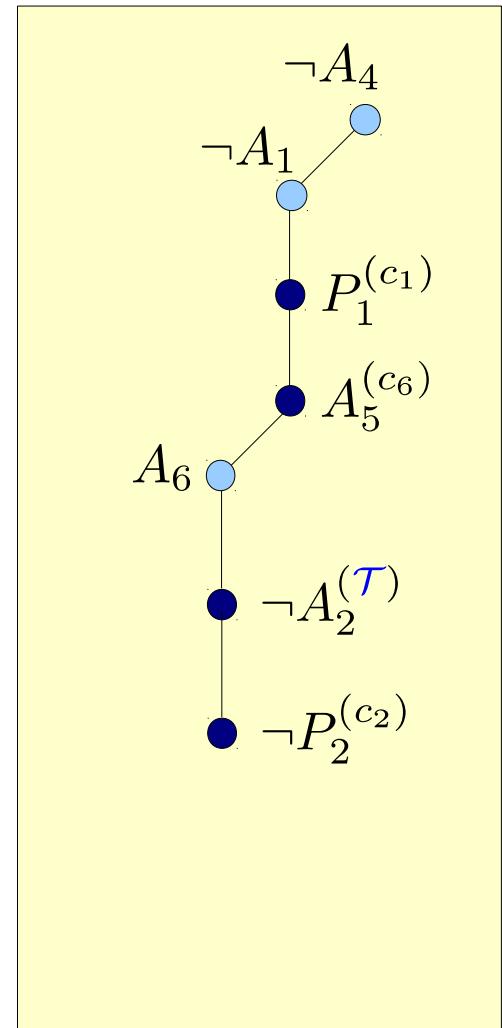


Example

$$\begin{aligned}
 \varphi &\stackrel{\text{def}}{=} \\
 c_1 : & (2x_2 - x_3 > 2) \vee P_1 \\
 c_2 : & \neg P_2 \vee (x_1 - x_5 \leq 1) \\
 c_3 : & \neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 \\
 c_4 : & \neg(3x_1 - x_3 \leq 6) \vee \neg P_1 \\
 c_5 : & P_1 \vee (3x_1 - 2x_2 \leq 3) \\
 c_6 : & (x_2 - x_4 \leq 6) \vee \neg P_1 \\
 c_7 : & P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 \\
 c_8 : & P_2 \vee (2x_2 - 3x_1 \geq 5) \vee \\
 & (x_3 + x_5 - 4x_1 \geq 0)
 \end{aligned}$$

$$\begin{aligned}
 \varphi^{\text{Bool}} &\stackrel{\text{def}}{=} \\
 A_1 & \vee P_1 \\
 \neg P_2 & \vee A_2 \\
 \neg A_3 & \vee \neg P_2 \\
 \neg A_4 & \vee \neg P_1 \\
 P_1 & \vee A_3 \\
 A_5 & \vee \neg P_1 \\
 P_1 & \vee A_6 \vee \neg P_2 \\
 P_2 & \vee A_7 \vee A_8
 \end{aligned}$$

$$M = [\neg A_4, \neg A_1, P_1, A_5, A_6, \neg A_2, \neg P_2]$$

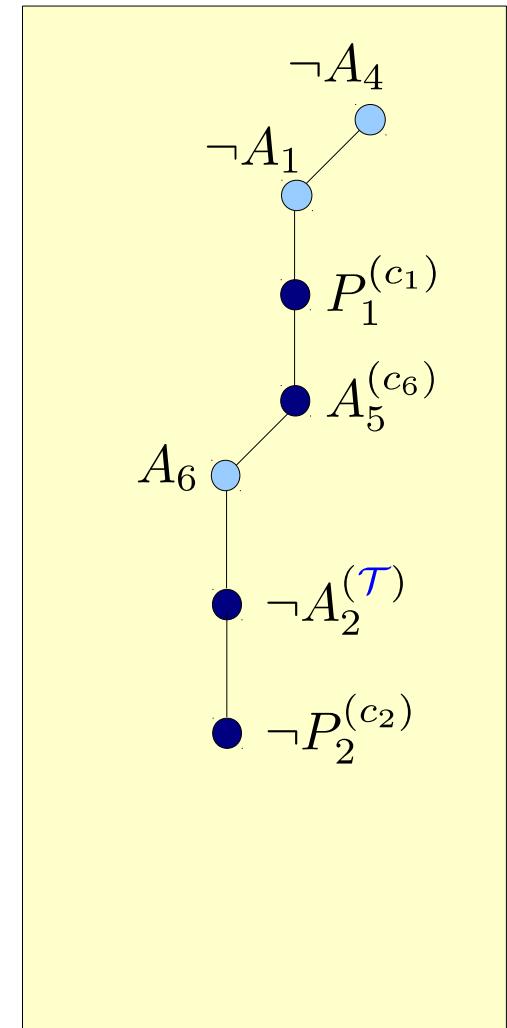


Example

$$\begin{aligned}
 \varphi &\stackrel{\text{def}}{=} \\
 c_1 : & (2x_2 - x_3 > 2) \vee P_1 \\
 c_2 : & \neg P_2 \vee (x_1 - x_5 \leq 1) \\
 c_3 : & \neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 \\
 c_4 : & \neg(3x_1 - x_3 \leq 6) \vee \neg P_1 \\
 c_5 : & P_1 \vee (3x_1 - 2x_2 \leq 3) \\
 c_6 : & (x_2 - x_4 \leq 6) \vee \neg P_1 \\
 c_7 : & P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 \\
 c_8 : & P_2 \vee (2x_2 - 3x_1 \geq 5) \vee \\
 & (x_3 + x_5 - 4x_1 \geq 0)
 \end{aligned}$$

$$\begin{aligned}
 \varphi^{\text{Bool}} &\stackrel{\text{def}}{=} \\
 A_1 &\vee P_1 \\
 \neg P_2 &\vee A_2 \\
 \neg A_3 &\vee \neg P_2 \\
 \neg A_4 &\vee \neg P_1 \\
 P_1 &\vee A_3 \\
 A_5 &\vee \neg P_1 \\
 P_1 &\vee A_6 \vee \neg P_2 \\
 P_2 &\vee A_7 \vee A_8
 \end{aligned}$$

$$M = [\neg A_4, \neg A_1, P_1, A_5, A_6, \neg A_2, \neg P_2]$$

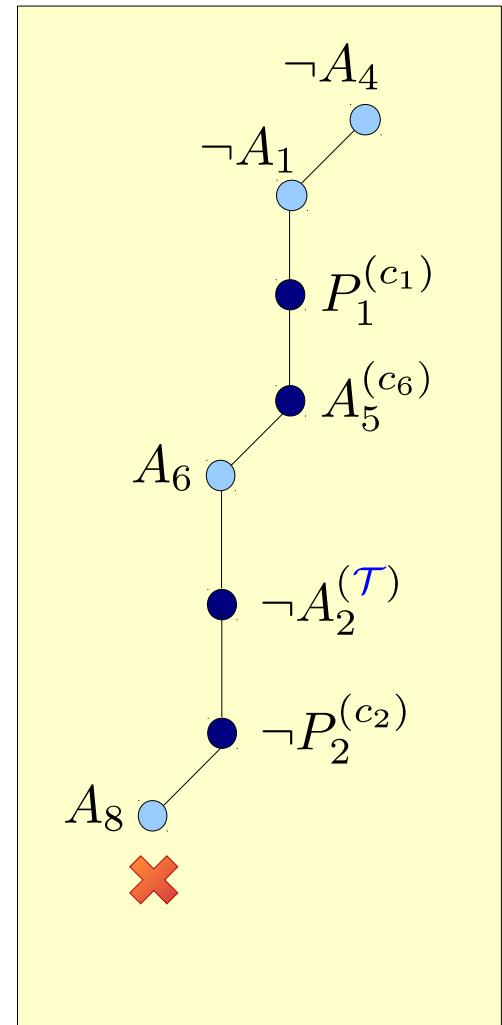


Example

$$\begin{aligned}
\varphi &\stackrel{\text{def}}{=} \\
c_1 : & (2x_2 - x_3 > 2) \vee P_1 \\
c_2 : & \neg P_2 \vee (x_1 - x_5 \leq 1) \\
c_3 : & \neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 \\
c_4 : & \neg(3x_1 - x_3 \leq 6) \vee \neg P_1 \\
c_5 : & P_1 \vee (3x_1 - 2x_2 \leq 3) \\
c_6 : & (x_2 - x_4 \leq 6) \vee \neg P_1 \\
c_7 : & P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 \\
c_8 : & P_2 \vee (2x_2 - 3x_1 \geq 5) \vee \\
& (x_3 + x_5 - 4x_1 \geq 0)
\end{aligned}$$

$$\begin{aligned}
\varphi^{\text{Bool}} &\stackrel{\text{def}}{=} \\
A_1 &\vee P_1 \\
\neg P_2 &\vee A_2 \\
\neg A_3 &\vee \neg P_2 \\
\neg A_4 &\vee \neg P_1 \\
P_1 &\vee A_3 \\
A_5 &\vee \neg P_1 \\
P_1 &\vee A_6 \vee \neg P_2 \\
P_2 &\vee A_7 \vee A_8
\end{aligned}$$

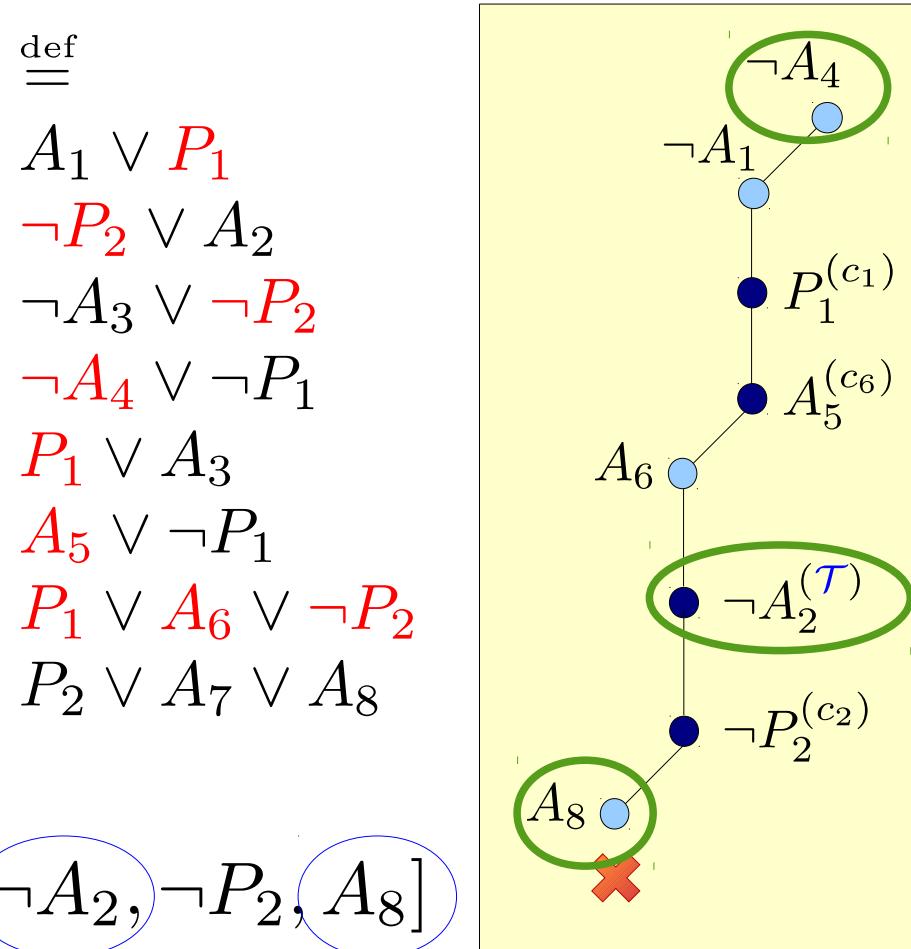
$$\begin{array}{c}
M = [\neg A_4, \neg A_1, P_1, A_5, A_6, \neg A_2, \neg P_2, A_8] \\
\neg(3x_1 - x_3 \leq 6) \qquad \neg(x_1 - x_5 \leq 1) \\
\hline
\neg(-x_3 + 3x_5 \leq 3) \quad (x_3 + x_5 - 4x_1 \geq 0) \\
\perp
\end{array}$$



Example

$$\begin{aligned}
 \varphi &\stackrel{\text{def}}{=} & \varphi^{\text{Bool}} &\stackrel{\text{def}}{=} \\
 c_1 : & (2x_2 - x_3 > 2) \vee P_1 & A_1 \vee \textcolor{red}{P_1} \\
 c_2 : & \neg P_2 \vee (x_1 - x_5 \leq 1) & \neg \textcolor{red}{P_2} \vee A_2 \\
 c_3 : & \neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 & \neg A_3 \vee \neg \textcolor{red}{P_2} \\
 c_4 : & \neg(3x_1 - x_3 \leq 6) \vee \neg P_1 & \neg \textcolor{red}{A_4} \vee \neg P_1 \\
 c_5 : & P_1 \vee (3x_1 - 2x_2 \leq 3) & \textcolor{red}{P_1} \vee A_3 \\
 c_6 : & (x_2 - x_4 \leq 6) \vee \neg P_1 & \textcolor{red}{A_5} \vee \neg P_1 \\
 c_7 : & P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 & \textcolor{red}{P_1} \vee \textcolor{red}{A_6} \vee \neg \textcolor{red}{P_2} \\
 c_8 : & P_2 \vee (2x_2 - 3x_1 \geq 5) \vee & P_2 \vee A_7 \vee A_8 \\
 & (x_3 + x_5 - 4x_1 \geq 0) &
 \end{aligned}$$

$$\begin{array}{c}
 M = [\neg \textcolor{blue}{A_4}, \neg A_1, P_1, A_5, A_6, \neg \textcolor{blue}{A_2}, \neg P_2, \textcolor{blue}{A_8}] \\
 \neg(3x_1 - x_3 \leq 6) \qquad \qquad \neg(x_1 - x_5 \leq 1) \\
 \hline
 \neg(-x_3 + 3x_5 \leq 3) \quad (x_3 + x_5 - 4x_1 \geq 0) \\
 \perp
 \end{array}$$



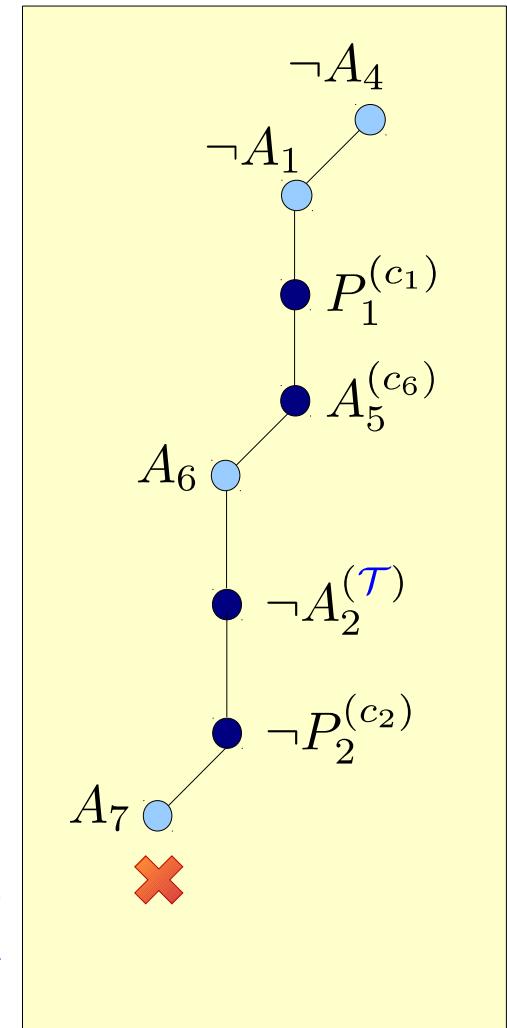
Conflict analysis →
compute
 \mathcal{T} -reason for $\neg A_2$

Example

$$\begin{aligned}
 \varphi &\stackrel{\text{def}}{=} \\
 c_1 : &(2x_2 - x_3 > 2) \vee P_1 \\
 c_2 : &\neg P_2 \vee (x_1 - x_5 \leq 1) \\
 c_3 : &\neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 \\
 c_4 : &\neg(3x_1 - x_3 \leq 6) \vee \neg P_1 \\
 c_5 : &P_1 \vee (3x_1 - 2x_2 \leq 3) \\
 c_6 : &(x_2 - x_4 \leq 6) \vee \neg P_1 \\
 c_7 : &P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 \\
 c_8 : &P_2 \vee (2x_2 - 3x_1 \geq 5) \vee \\
 &(x_3 + x_5 - 4x_1 \geq 0)
 \end{aligned}$$

$$\begin{aligned}
 \varphi^{\text{Bool}} &\stackrel{\text{def}}{=} \\
 A_1 &\vee P_1 \\
 \neg P_2 &\vee A_2 \\
 \neg A_3 &\vee \neg P_2 \\
 \neg A_4 &\vee \neg P_1 \\
 P_1 &\vee A_3 \\
 A_5 &\vee \neg P_1 \\
 P_1 &\vee A_6 \vee \neg P_2 \\
 P_2 &\vee A_7 \vee A_8
 \end{aligned}$$

$$\begin{array}{c}
 M = [\neg A_4, \neg A_1, P_1, A_5, A_6, \neg A_2, \neg P_2, A_7] \\
 \hline
 \neg(3x_1 - x_3 \leq 6) \qquad \neg(2x_2 - x_3 > 2) \\
 \hline
 \neg(3x_1 - 2x_2 \leq 4) \quad (2x_2 - 3x_1 \geq 5) \\
 \hline
 \perp
 \end{array}$$

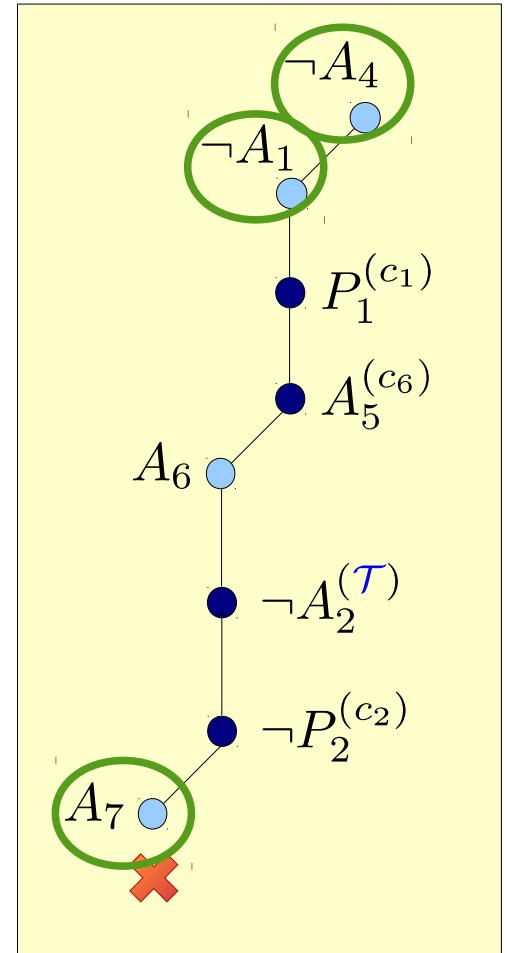


Example

$$\begin{aligned}
\varphi &\stackrel{\text{def}}{=} \varphi \\
c_1 &: (2x_2 - x_3 > 2) \vee P_1 \\
c_2 &: \neg P_2 \vee (x_1 - x_5 \leq 1) \\
c_3 &: \neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 \\
c_4 &: \neg(3x_1 - x_3 \leq 6) \vee \neg P_1 \\
c_5 &: P_1 \vee (3x_1 - 2x_2 \leq 3) \\
c_6 &: (x_2 - x_4 \leq 6) \vee \neg P_1 \\
c_7 &: P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 \\
c_8 &: P_2 \vee (2x_2 - 3x_1 \geq 5) \vee \\
&\quad (x_3 + x_5 - 4x_1 \geq 0)
\end{aligned}$$

$$\begin{aligned}
\varphi^{\text{Bool}} &\stackrel{\text{def}}{=} \\
&A_1 \vee P_1 \\
&\neg P_2 \vee A_2 \\
&\neg A_3 \vee \neg P_2 \\
&\neg A_4 \vee \neg P_1 \\
&P_1 \vee A_3 \\
&A_5 \vee \neg P_1 \\
&P_2 \vee A_6 \vee \neg P_2 \\
&P_2 \vee A_7 \vee A_8
\end{aligned}$$

$$\begin{array}{c}
M = [\neg A_4, \neg A_1, P_1, A_5, A_6, \neg A_2, \neg P_2, A_7] \\
\neg(3x_1 - x_3 \leq 6) \qquad \qquad \neg(2x_2 - x_3 > 2) \\
\hline
\neg(3x_1 - 2x_2 \leq 4) \quad (2x_2 - 3x_1 \geq 5) \\
\hline
\perp
\end{array}$$



$\neg A_2$ not involved in conflict analysis \rightarrow
no need to compute T-reason

Filtering of assignments

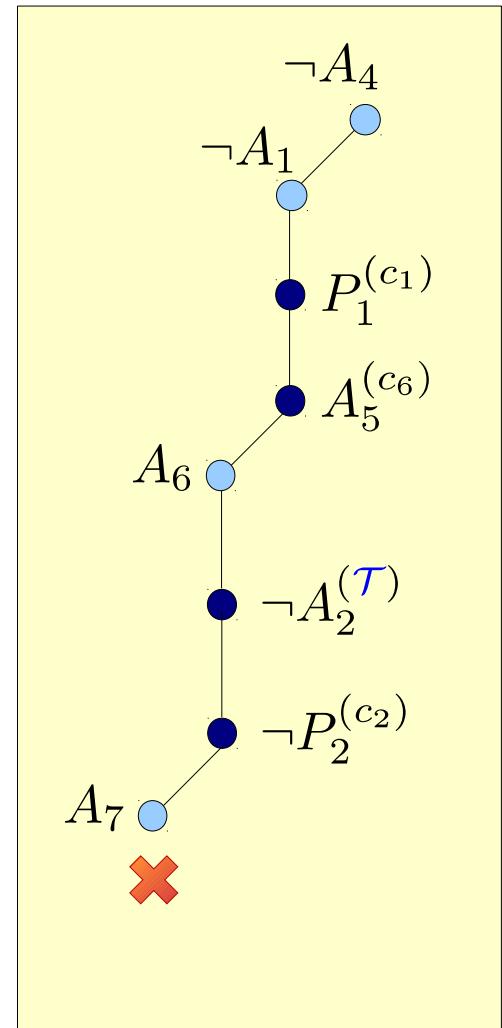
- Remove **unnecessary literals** from current assignment M
 - **Irrelevant** literals: l s.t. $M \setminus \{l\} \models \varphi$ (φ arbitrary, not CNF)
 - **Ghost** literals: l occurs only in clauses satisfied by $M \setminus \{l\}$
 - **Pure** literals: $\neg l \in M$ and l occurs only positively in φ
 - Note: this is **not** the pure-literal rule of SAT!
- **Pros:**
 - reduce effort for T -solver
 - increases the chances of finding a solution
- **Cons:**
 - may weaken the effect of early pruning (esp. with T -propagation)
 - may introduce overhead in SAT search
- Typically used for **expensive theories**

Example

$$\begin{aligned}
 \varphi &\stackrel{\text{def}}{=} \\
 c_1 : &(2x_2 - x_3 > 2) \vee P_1 \\
 c_2 : &\neg P_2 \vee (x_1 - x_5 \leq 1) \\
 c_3 : &\neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 \\
 c_4 : &\neg(3x_1 - x_3 \leq 6) \vee \neg P_1 \\
 c_5 : &P_1 \vee (3x_1 - 2x_2 \leq 3) \\
 c_6 : &(x_2 - x_4 \leq 6) \vee \neg P_1 \\
 c_7 : &P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 \\
 c_8 : &P_2 \vee (2x_2 - 3x_1 \geq 5) \vee \\
 &(x_3 + x_5 - 4x_1 \geq 0)
 \end{aligned}$$

$$\begin{aligned}
 \varphi^{\text{Bool}} &\stackrel{\text{def}}{=} \\
 A_1 &\vee P_1 \\
 \neg P_2 &\vee A_2 \\
 \neg A_3 &\vee \neg P_2 \\
 \neg A_4 &\vee \neg P_1 \\
 P_1 &\vee A_3 \\
 A_5 &\vee \neg P_1 \\
 P_1 &\vee A_6 \vee \neg P_2 \\
 P_2 &\vee A_7 \vee A_8
 \end{aligned}$$

$$\begin{array}{c}
 M = [\neg A_4, \neg A_1, P_1, A_5, A_6, \neg A_2, \neg P_2, A_7] \\
 \hline
 \neg(3x_1 - x_3 \leq 6) \qquad \neg(2x_2 - x_3 > 2) \\
 \hline
 \neg(3x_1 - 2x_2 \leq 4) \quad (2x_2 - 3x_1 \geq 5) \\
 \hline
 \perp
 \end{array}$$



Example

$$\begin{aligned}
 \varphi &\stackrel{\text{def}}{=} \\
 c_1 : & (2x_2 - x_3 > 2) \vee P_1 \\
 c_2 : & \neg P_2 \vee (x_1 - x_2 < 1) \\
 c_3 : & \neg(3x_1 - 2x_2 \leq 6) \\
 c_4 : & \neg(3x_1 - x_3 \geq 5) \\
 c_5 : & P_1 \vee (3x_1 - 2x_2 \leq 3) \\
 c_6 : & (x_2 - x_4 \leq 6) \vee \neg P_1 \\
 c_7 : & P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 \\
 c_8 : & P_2 \vee (2x_2 - 3x_1 \geq 5) \vee \\
 & (x_3 + x_5 - 4x_1 \geq 0)
 \end{aligned}$$

Ghost!

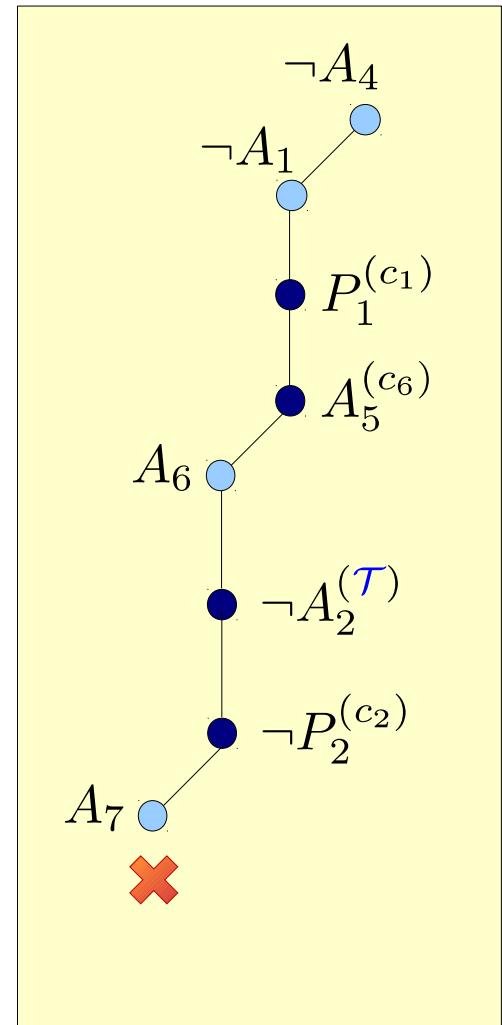
$$\begin{aligned}
 \varphi^{\text{Bool}} &\stackrel{\text{def}}{=} \\
 & A_1 \vee P_1 \\
 & \neg P_2 \vee A_2 \\
 & \neg A_3 \vee \neg P_2 \\
 & \neg A_4 \vee \neg P_1 \\
 & P_1 \vee A_3 \\
 & A_5 \vee \neg P_1 \\
 & P_1 \vee A_6 \vee \neg P_2 \\
 & P_2 \vee A_7 \vee A_8
 \end{aligned}$$

$$M = [\neg A_4, \neg A_1, P_1, A_5, A_6, \neg A_2, \neg P_2, A_7]$$

$$\neg(3x_1 - x_3 \leq 6) \quad \neg(2x_2 - x_3 > 2)$$

$$\neg(3x_1 - 2x_2 \leq 4) \quad (2x_2 - 3x_1 \geq 5)$$

\perp

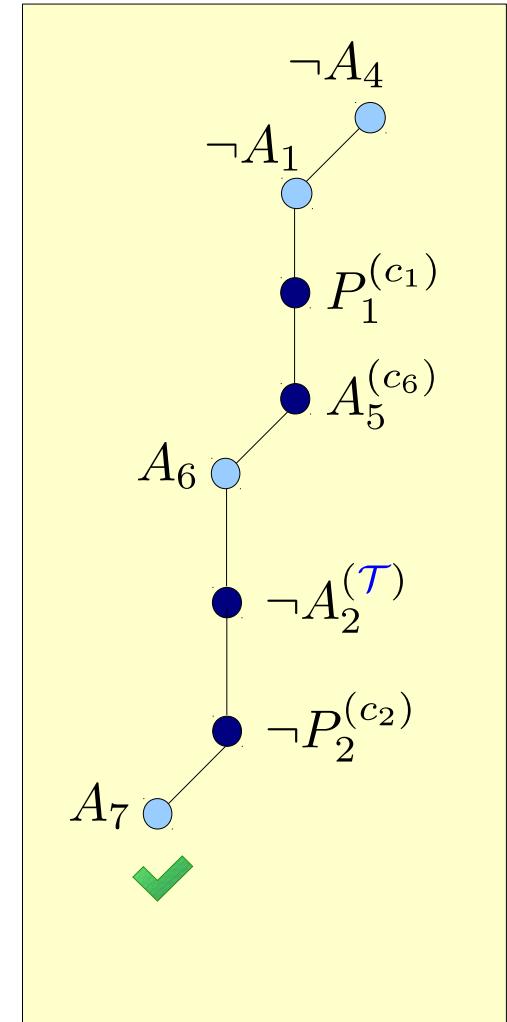


Example

$$\begin{aligned}
 \varphi &\stackrel{\text{def}}{=} \varphi^{\text{Bool}} \\
 c_1 : & (2x_2 - x_3 > 2) \vee P_1 & \varphi^{\text{Bool}} &\stackrel{\text{def}}{=} \\
 c_2 : & \neg P_2 \vee (x_1 - x_5 \leq 1) & A_1 \vee P_1 \\
 c_3 : & \neg(3x_1 - 2x_2 \leq 3) \vee \neg P_2 & \neg P_2 \vee A_2 \\
 c_4 : & \neg(3x_1 - x_3 \leq 6) \vee \neg P_1 & \neg A_3 \vee \neg P_2 \\
 c_5 : & P_1 \vee (3x_1 - 2x_2 \leq 3) & \neg A_4 \vee \neg P_1 \\
 c_6 : & (x_2 - x_4 \leq 6) \vee \neg P_1 & P_1 \vee A_3 \\
 c_7 : & P_1 \vee (x_3 = 3x_5 + 4) \vee \neg P_2 & A_5 \vee \neg P_1 \\
 c_8 : & P_2 \vee (2x_2 - 3x_1 \geq 5) \vee & P_1 \vee A_6 \vee \neg P_2 \\
 & (x_3 + x_5 - 4x_1 \geq 0) & P_2 \vee A_7 \vee A_8
 \end{aligned}$$

$$M = [\neg A_4, \quad, P_1, A_5, A_6, \neg A_2, \neg P_2, A_7]$$

SAT



T -atoms and T -lemmas on demand

- Some T -solvers might need to perform **internal case splits** to decide satisfiability

- **Example:** linear integer arithmetic

$$(x - 3y \leq 0), (y - 2x \leq 0), (x + 3y \leq 3) \mapsto \begin{cases} \text{case } (y \leq 0) \mapsto \perp \\ \text{case } (y \geq 1) \mapsto \perp \end{cases}$$

- **Splitting on-demand:** use the SAT solver for case splits

- Encode splits as T -valid clauses (**T -lemmas**) with **fresh T -atoms**
 - Generated **on-the-fly during search**, when needed
 - **Benefits:** reuse the efficient SAT search
 - simplify the implementation
 - exploit advanced search-space exploration techniques (backjumping, learning, restarts, ...)
 - **Potential drawback:** “pollute” the SAT search

- *T*-solver can now return **unknown** also for complete checks
 - In this case, it must also produce one or more *T*-lemmas
 - SAT solver learns the lemmas and continues searching
 - eventually, *T*-solver **can decide** sat/unsat
- **Termination** issues
 - If SAT solver drops lemmas, might get into an infinite loop
 - similar to the Boolean case (and the “basic” SMT case), similar solution (e.g. monotonically increase # of kept lemmas)
 - *T*-solver can generate an **infinite number of new *T*-atoms!**
 - For several theories (e.g. linear integer arithmetic, arrays) enough to draw new *T*-atoms **from a finite set** (dependent on the input problem)

T-solver interface example

```
class TheorySolver {  
    bool tell_atom(Var boolatom, Expr tatom);  
  
    void new_decision_level();  
    void backtrack(int level);  
  
    void assume(Lit l);  
    lbool check(bool approx);  
  
    void get_conflict(LitList &out);  
  
    Lit get_next_implied();  
    bool get_explanation(Lit implied, LitList &out);  
  
    bool get_lemma(LitList &out);  
  
    Expr get_value(Expr term);  
};
```

DPLL(T) example

```
def DPLL-T():
    while True:
        conflict = False
        if unit_propagation():
            res = T.check(!all_assigned())
            if res == False: conflict = True
            elif res == True: conflict = theory_propagation()
            elif learn_T_lemmas(): continue
            elif !all_assigned(): decide()
            else:
                build_model()
                return SAT
        else: conflict = True
        if conflict:
            lvl, cls = conflict_analysis()
            if lvl < 0: return UNSAT
            else:
                backtrack(lvl)
                learn(cls)
```

DPLL(T) example

```
def DPLL-T():
    while True:
        conflict = False
        if unit_propagation():
            res = T.check(!all_assigned())
            if res == False: conflict = True
            elif res == True: conflict = theory_propagation()
            elif learn_T_lemmas(): continue
            elif !all_assigned(): decide()
            else:
                build_model()
                return SAT
        else: conflict = True
        if conflict:
            lvl, cls = conflict_analysis()
            if lvl < 0: return UNSAT
            else:
                backtrack(lvl)
                learn(cls)
    call T.assume(lit)
    call T.get_next_implied()
    call T.get_lemma()
    call T.new_decision_level()
    T.assume(lit)
    call T.get_value(e)
    call T.get_conflict(c)
    T.get_explanation(l, e)
    call T.backtrack(lvl)
```

Outline

Introduction

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories

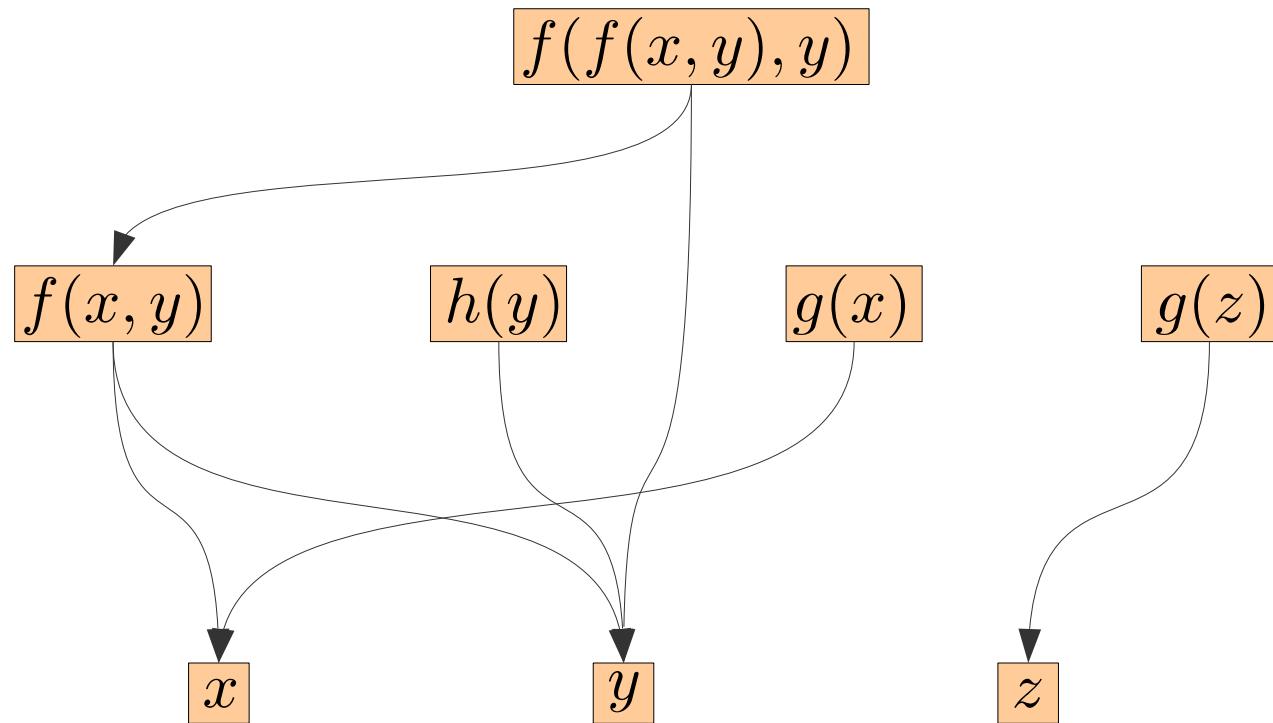
Quantifiers in DPLL(T)

Equality (EUF)

- Polynomial time $O(n \log n)$ **congruence closure** procedure
- Fully incremental and backtrackable (stack-based)
- Supports **efficient T -propagation**
 - Exhaustive for positive equalities
 - Incomplete for disequalities
- Lazy explanations and conflict generation
- Typically used as a “**core**” T -solver
- Supports efficient extensions, e.g.
 - Integer offsets
 - Bit-vector slicing and concatenation

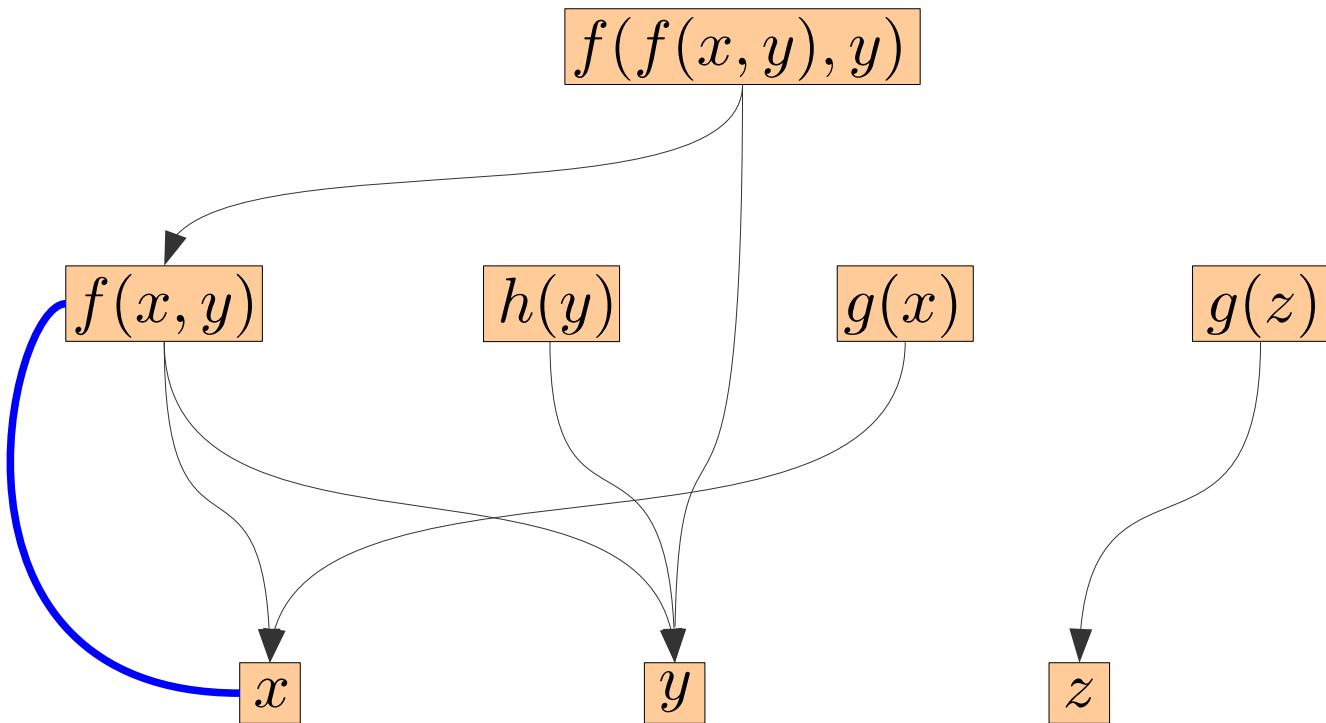
Example

$[(f(x, y) = x), (h(y) = g(x)), (f(f(x, y), y) = z), \neg(g(x) = g(z))]$



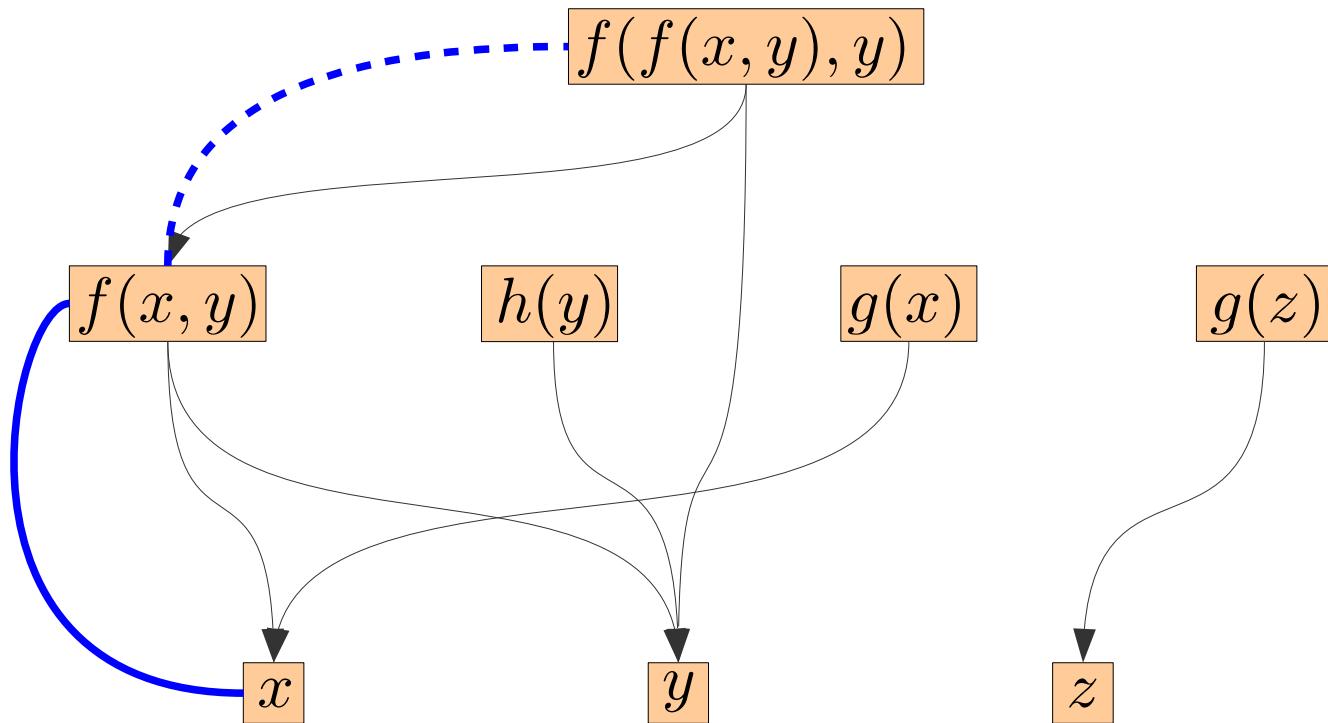
Example

$\llbracket (f(x, y) = x), (h(y) = g(x)), (f(f(x, y), y) = z), \neg(g(x) = g(z)) \rrbracket$



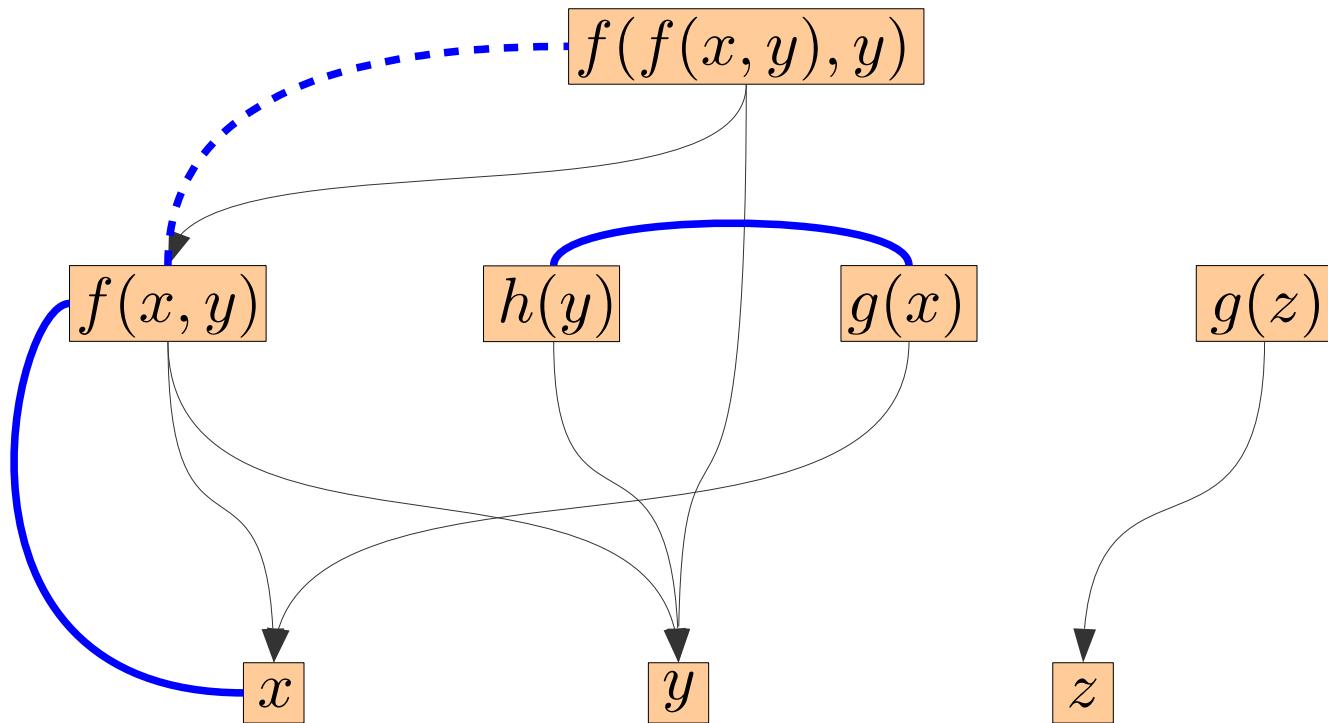
Example

$\boxed{[(f(x, y) = x), (h(y) = g(x)), (f(f(x, y), y) = z), \neg(g(x) = g(z))]}$



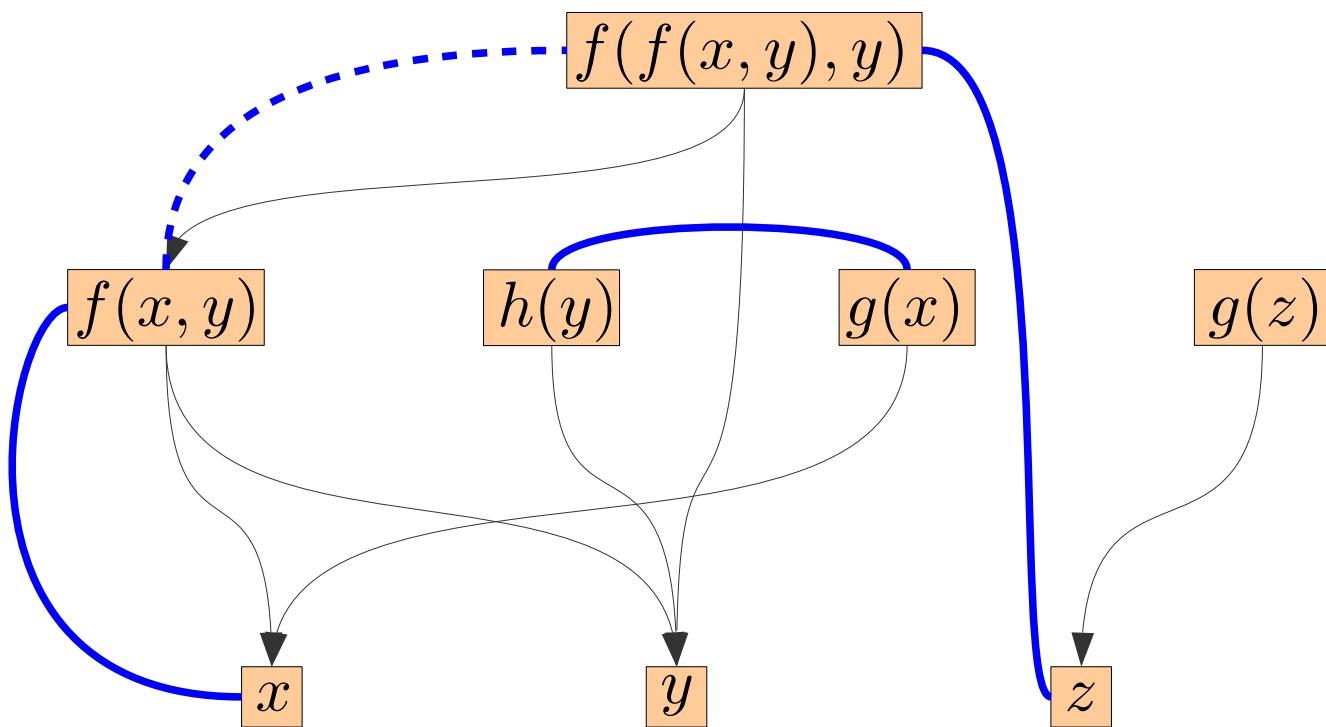
Example

$[(f(x, y) = x), (h(y) = g(x)), (f(f(x, y), y) = z), \neg(g(x) = g(z))]$



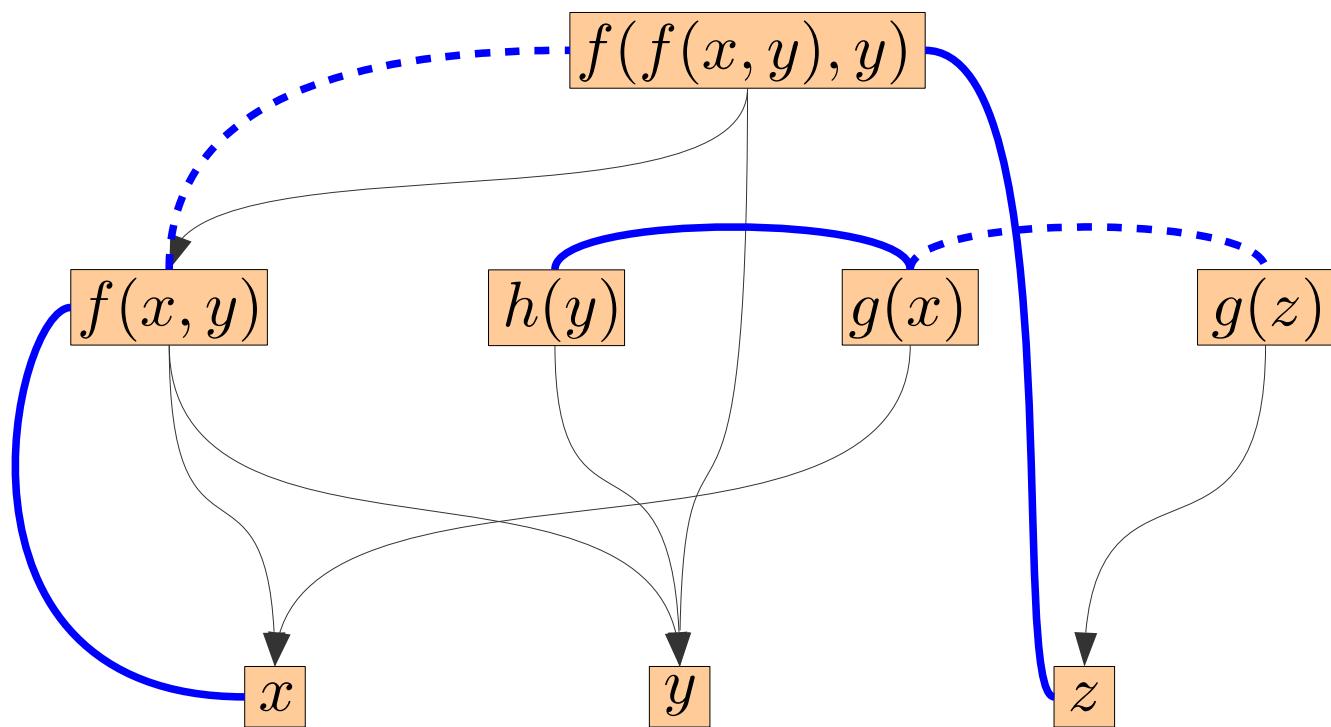
Example

$[(f(x, y) = x), (h(y) = g(x)), (f(f(x, y), y) = z), \neg(g(x) = g(z))]$



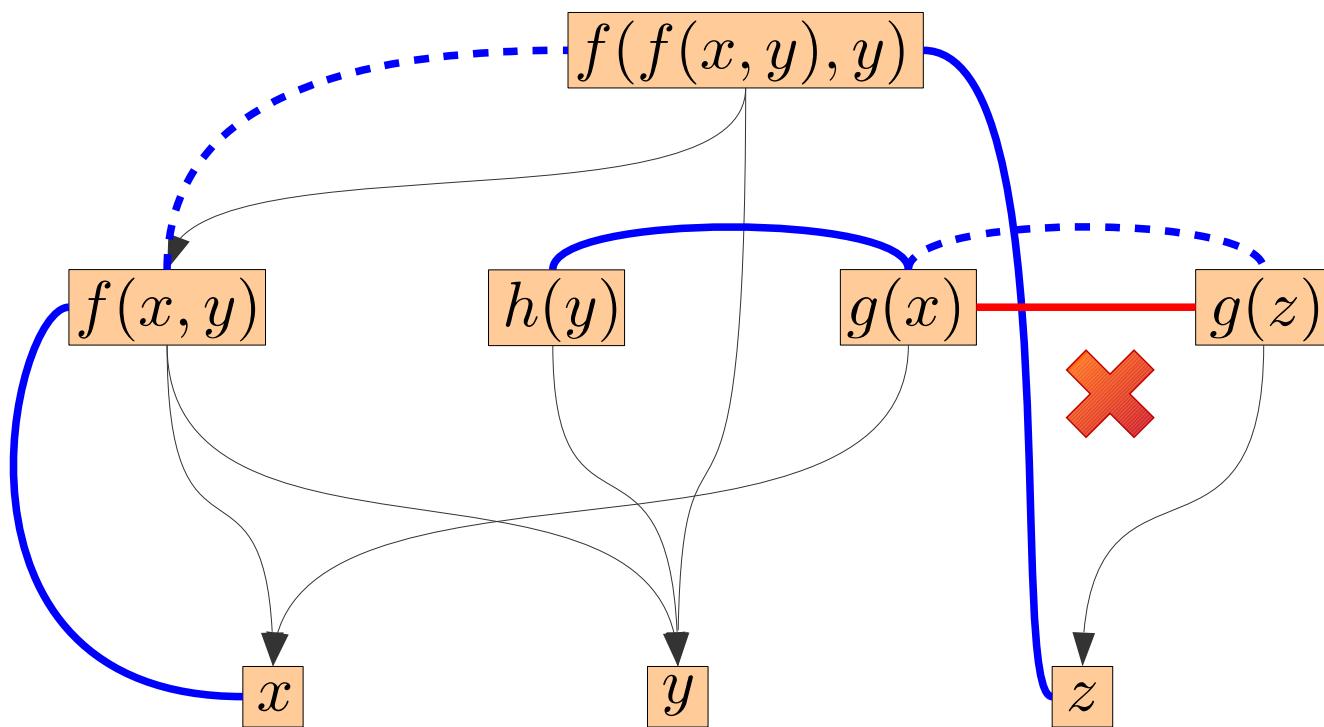
Example

$$[(f(x, y) = x), (h(y) = g(x)), (f(f(x, y), y) = z), \neg(g(x) = g(z))]$$



Example

$[(f(x, y) = x), (h(y) = g(x)), (f(f(x, y), y) = z), \neg(g(x) = g(z))]$

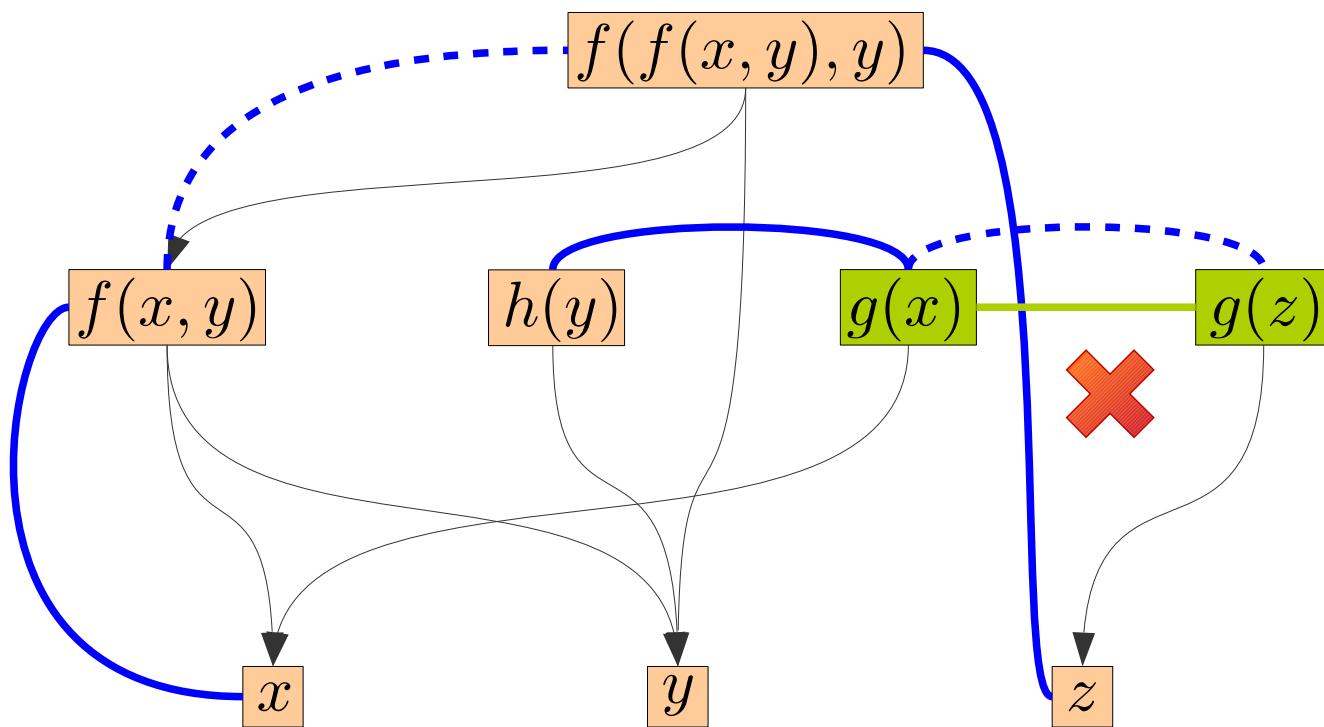


Example

$[(f(x, y) = x), (h(y) = g(x)), (f(f(x, y), y) = z), \neg(g(x) = g(z))]$

`get_conflict():`

$\neg(g(x) = g(z))$

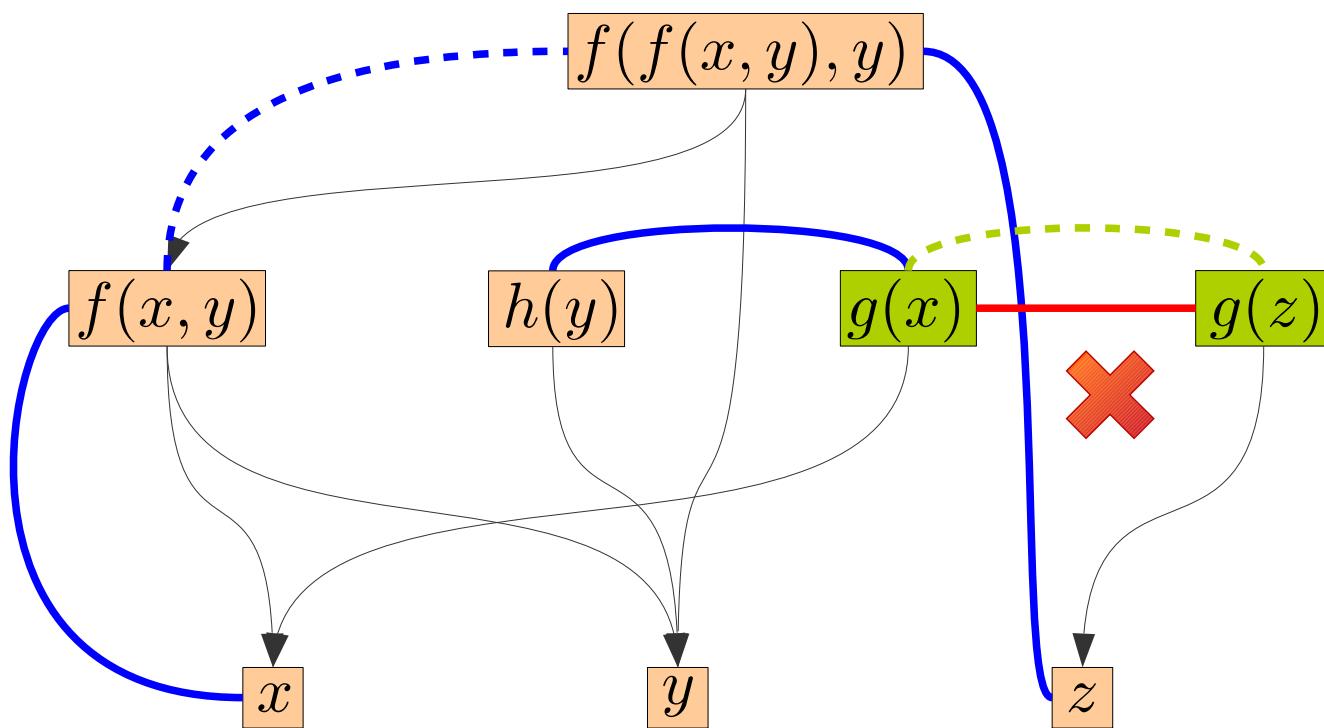


Example

$[(f(x, y) = x), (h(y) = g(x)), (f(f(x, y), y) = z), \neg(g(x) = g(z))]$

`get_conflict():`

$\neg(g(x) = g(z))$

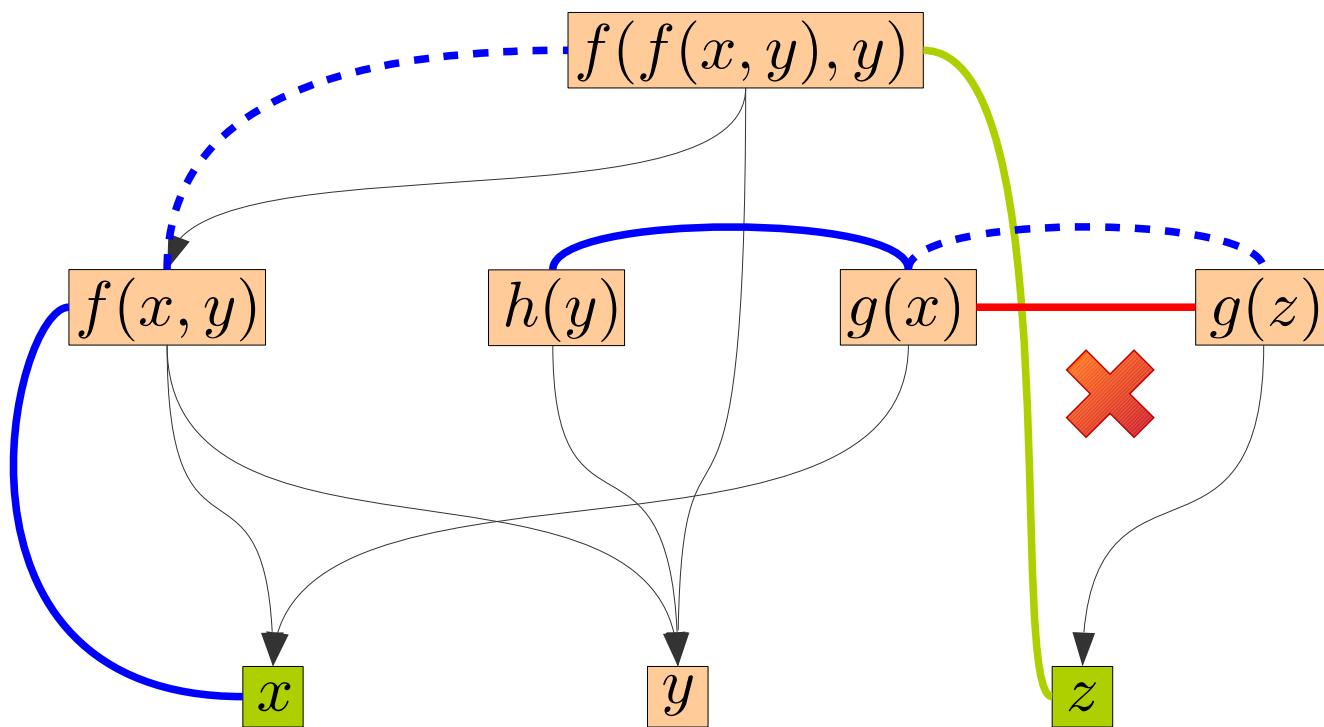


Example

$[(f(x, y) = x), (h(y) = g(x)), (f(f(x, y), y) = z), \neg(g(x) = g(z))]$

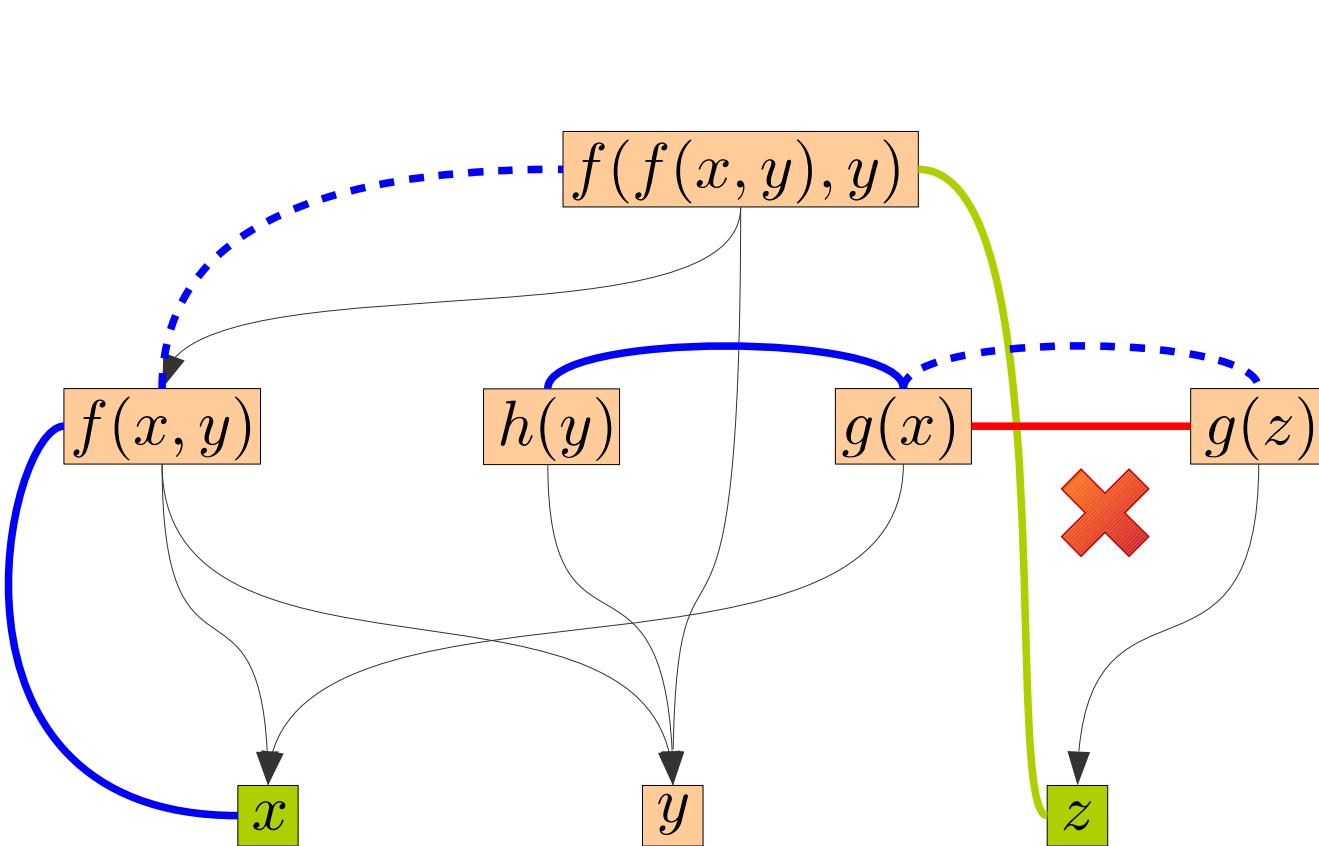
`get_conflict():`

$\neg(g(x) = g(z))$



Example

$[(f(x, y) = x), (h(y) = g(x)), (f(f(x, y), y) = z), \neg(g(x) = g(z))]$



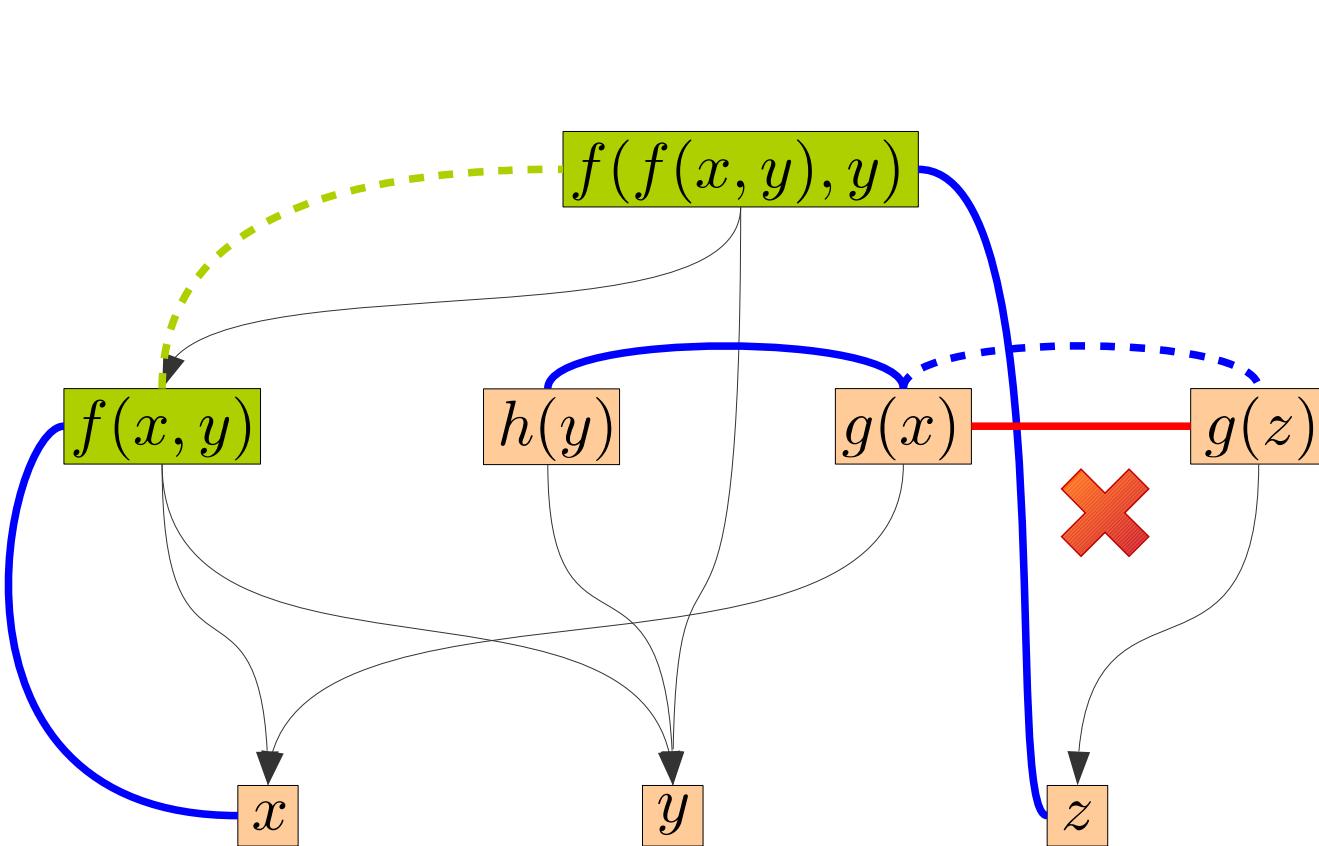
`get_conflict():`

$\neg(g(x) = g(z))$

$(f(f(x, y), y) = z)$

Example

$[(f(x, y) = x), (h(y) = g(x)), (f(f(x, y), y) = z), \neg(g(x) = g(z))]$



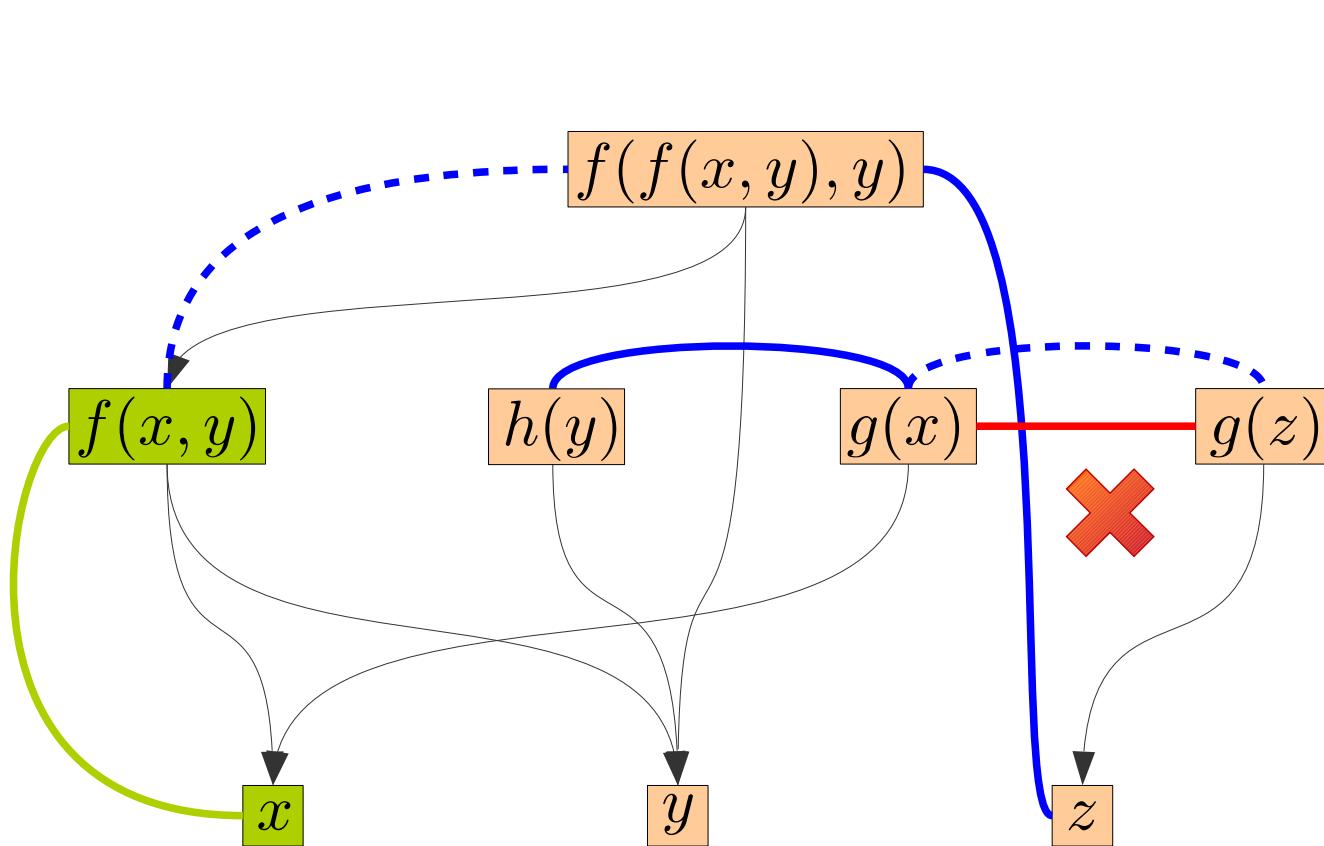
`get_conflict():`

$\neg(g(x) = g(z))$

$(f(f(x, y), y) = z)$

Example

$[(f(x, y) = x), (h(y) = g(x)), (f(f(x, y), y) = z), \neg(g(x) = g(z))]$



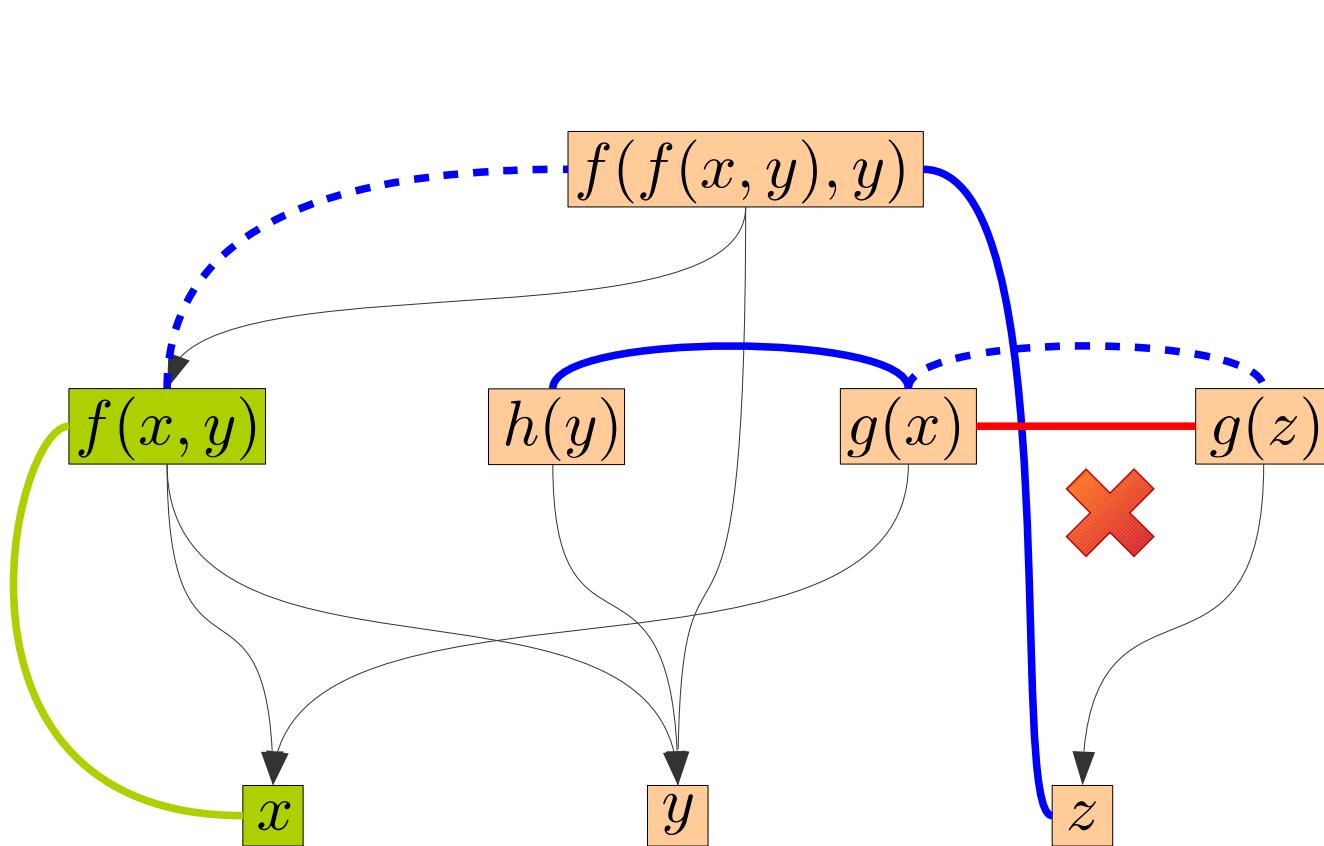
`get_conflict():`

$\neg(g(x) = g(z))$

$(f(f(x, y), y) = z)$

Example

$[(f(x, y) = x), (h(y) = g(x)), (f(f(x, y), y) = z), \neg(g(x) = g(z))]$



`get_conflict():`

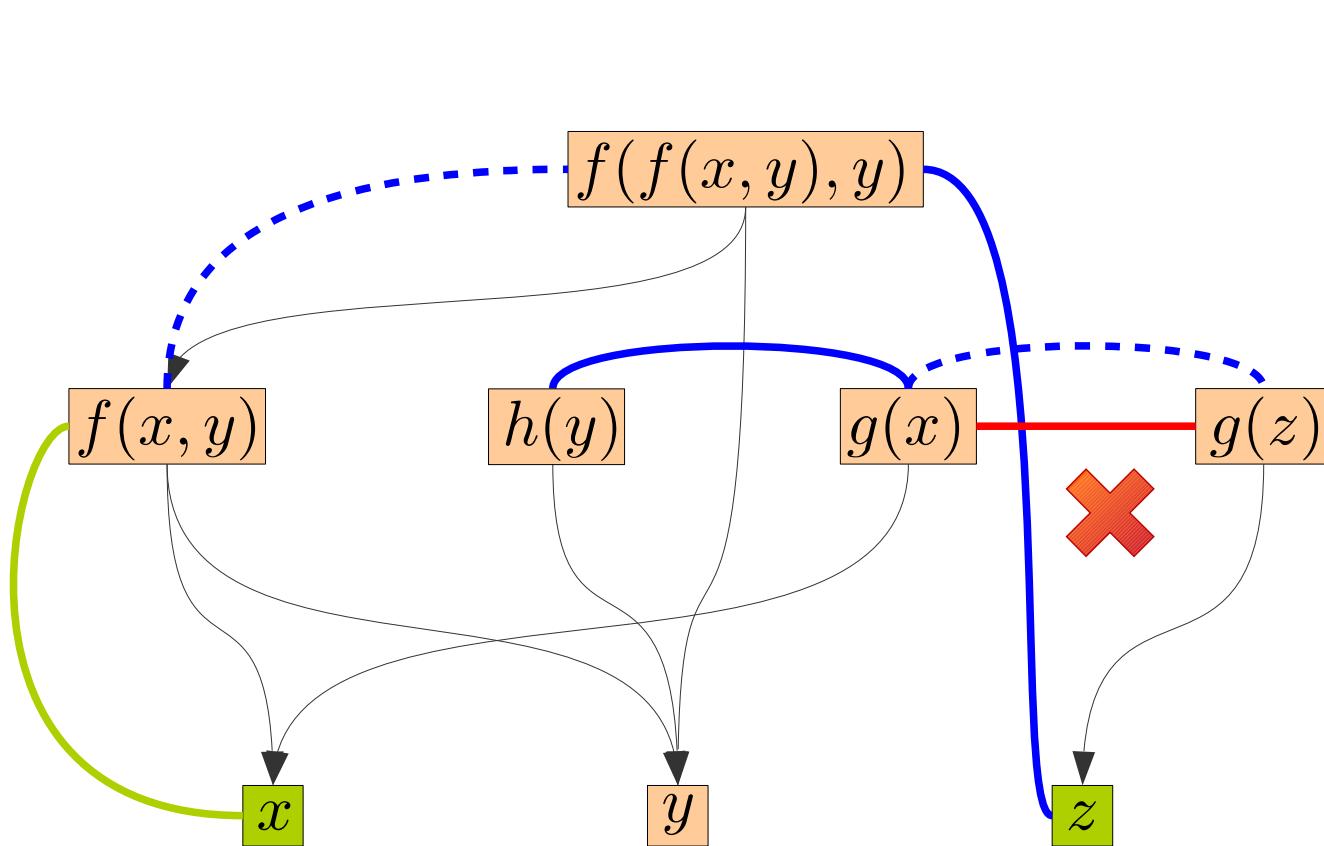
$\neg(g(x) = g(z))$

$(f(f(x, y), y) = z)$

$(f(x, y) = x)$

Example

$[(f(x, y) = x), (h(y) = g(x)), (f(f(x, y), y) = z), \neg(g(x) = g(z))]$



`get_conflict():`

$\neg(g(x) = g(z))$

$(f(f(x, y), y) = z)$

$(f(x, y) = x)$

Linear Rational Arithmetic (LRA)

- Constraints of the form $\sum_i a_i x_i \leq c$
- Variant of **simplex** specifically designed for DPLL(T)
 - **Very efficient** backtracking
 - Incremental checks
 - **Cheap deduction** of unsassigned literals
 - **Minimal explanations** generation
 - Can handle efficiently also strict inequalities
 - Rewrite $(t < 0)$ to $(t + \varepsilon \leq 0)$, treat ε symbolically
 - Worst-case exponential (although LRA is polynomial), but **fast in practice**

Simplex for DPLL(T)

Preprocessing: $\sum a_h x_h \leq u \mapsto x_{\text{slack}} = \sum a_h x_h \wedge x_{\text{slack}} \leq u$

Tableau of equations (fixed) + bounds (added/removed)

Candidate solution β always consistent with the tableau

$$\begin{aligned}x_{\text{slack } 1} &= \\x_{\text{slack } 2} &= \\&\vdots \\&\vdots \\&\vdots \\x_{\text{slack } i} &= a_{i1}x_1 + a_{i2}x_2 + \dots + a_{im}x_m \\&\vdots \\&\vdots \\&\vdots \\x_{\text{slack } n} &= \end{aligned}$$

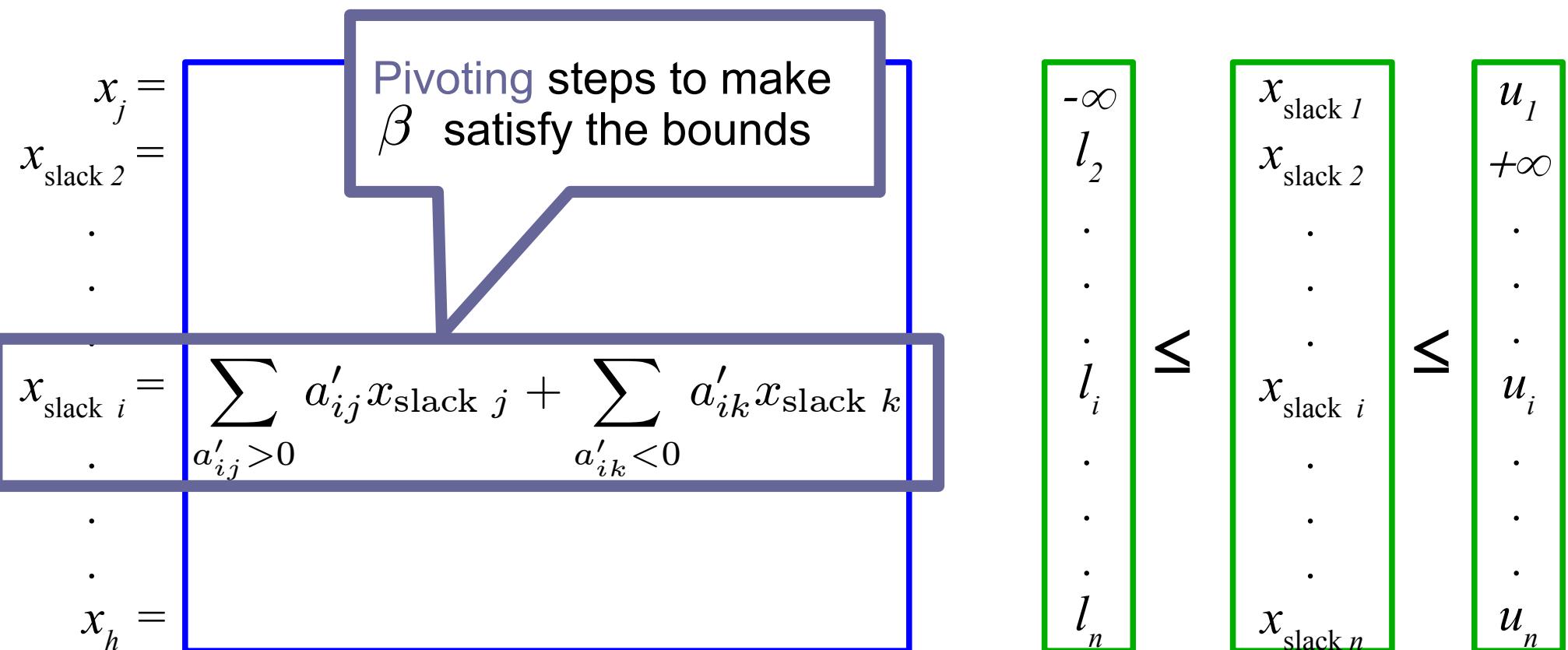
$$\begin{array}{c|c|c|c} -\infty & l_2 & x_{\text{slack } 1} & u_1 \\ & \vdots & \vdots & \vdots \\ & l_i & x_{\text{slack } 2} & u_i \\ & \vdots & \vdots & \vdots \\ & l_n & x_{\text{slack } i} & u_i \\ & \vdots & \vdots & \vdots \\ & l_n & x_{\text{slack } n} & u_n \end{array} \leq \leq$$

Simplex for DPLL(T)

Preprocessing: $\sum a_h x_h \leq u \mapsto x_{\text{slack}} = \sum a_h x_h \wedge x_{\text{slack}} \leq u$

Tableau of equations (fixed) + bounds (added/removed)

Candidate solution β always consistent with the tableau

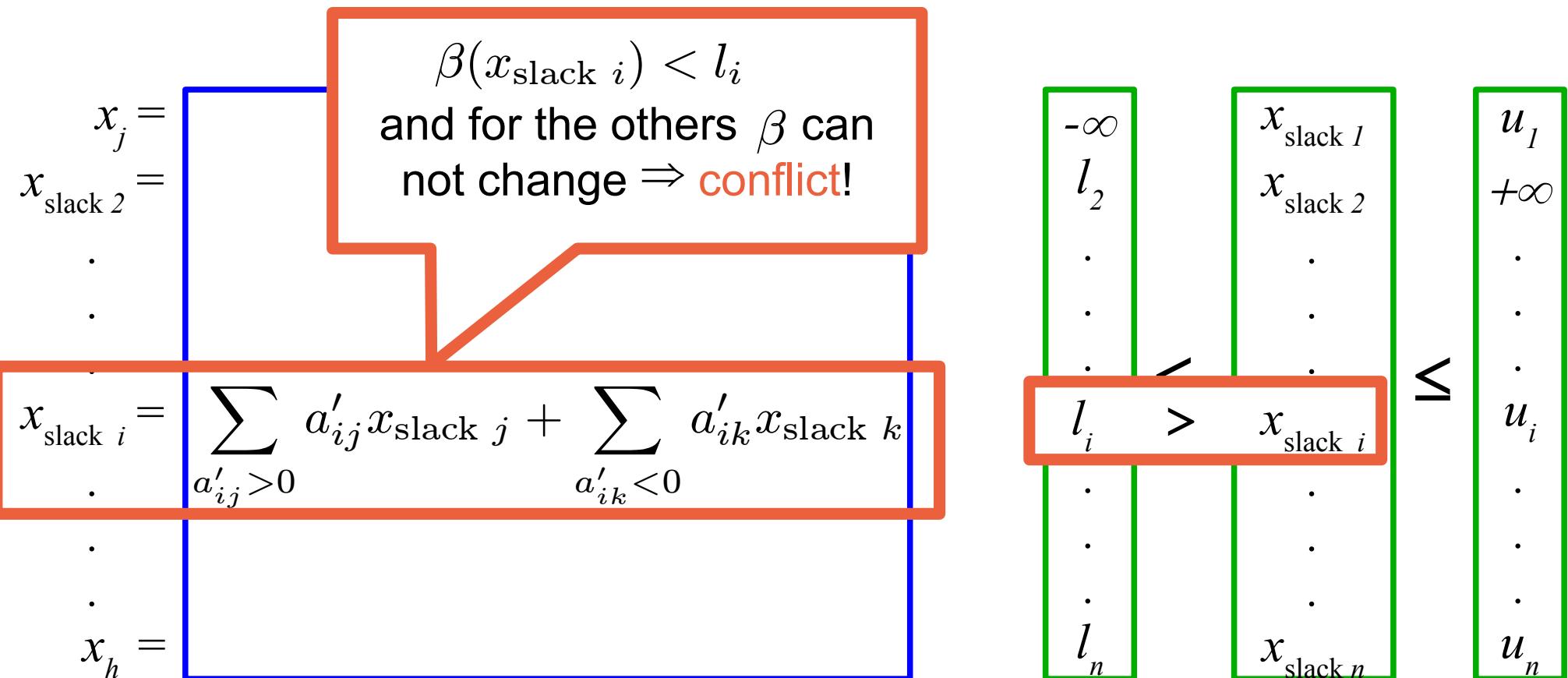


Simplex for DPLL(T)

Preprocessing: $\sum a_h x_h \leq u \mapsto x_{\text{slack}} = \sum a_h x_h \wedge x_{\text{slack}} \leq u$

Tableau of equations (fixed) + bounds (added/removed)

Candidate solution β always consistent with the tableau



Simplex for DPLL(T)

Preprocessing: $\sum a_h x_h \leq u \mapsto x_{\text{slack}} = \sum a_h x_h \wedge x_{\text{slack}} \leq u$

Tableau of equations (fixed) + bounds (added/removed)

Candidate solution β always consistent with the tableau

$$\begin{aligned} x_j &= \\ x_{\text{slack } 2} &= \\ \vdots & \\ x_{\text{slack } i} &= \sum_{a'_{ij} > 0} a'_{ij} x_{\text{slack } j} + \sum_{a'_{ik} < 0} a'_{ik} x_{\text{slack } k} \\ \vdots & \\ x_h &= \end{aligned}$$

$\beta(x_{\text{slack } i}) < l_i$
and for the others β can
not change \Rightarrow conflict!

`get_conflict():`

$\{(\sum a_h x_h \leq u)\}_j$
for $x_{\text{slack } j} \cup$

$\{(\sum a_h x_h \geq l)\}_k$
for $x_{\text{slack } k} \cup$

$\{(\sum a_h x_h \geq l)\}_i$
for $x_{\text{slack } i}$

Linear Integer Arithmetic (LIA)

- **NP-complete** problem
- Popular approach: simplex + **branch and bound**
 - Approximate checks solve only over the rationals
 - In complete checks, force integrality of variables by adding either:
 - **Branch and bound** lemmas $(x \leq \lfloor c \rfloor) \vee (x \geq \lceil c \rceil)$
 - **Cutting plane** lemmas
 - Inequalities entailed by the current constraints, excluding only non-integer solutions
 - Gomory cuts commonly used
 - Using splitting on-demand
 - Might also include other **specialized sub-solvers** for tractable fragments
 - E.g. specialized equational reasoning

- **Read (rd) and write (wr) operations over arrays**
- **Equality** over array variables (extensionality)
- **Example:** $\text{wr}(a, i, x) = \text{wr}(b, i, \text{rd}(a, j, y)) \wedge \neg(a = b)$
- **Common approach:** reduction to EUF via **lazy axiom instantiation**
 - **read-over-write:** $\forall a. \forall i. \forall x. (\text{rd}(\text{wr}(a, i, x), i) = x)$
 $\forall a. \forall i. \forall j. \forall x. ((i \neq j) \rightarrow \text{rd}(\text{wr}(a, i, x), j) = \text{rd}(a, j))$
 - **extensionality:** $\forall a. \forall b. ((a \neq b) \rightarrow \exists i. (\text{rd}(a, i) \neq \text{rd}(b, i)))$
- Add **lemmas on-demand** by instantiating the quantified variables with terms occurring in the input formula
 - Using smart “frugal” strategies: **check** candidate solution, **instantiate only (potentially) violated axioms**

Example

$\neg(j = k), \neg(\text{rd}(\text{wr}(a, i, x), j) = \text{rd}(a, j)), \neg(\text{rd}(\text{wr}(a, i, x), k) = \text{rd}(a, k))$

EUF solution (equivalence classes):

$\{a, \text{wr}(a, i, x)\}, \{\text{rd}(\text{wr}(a, i, x), j)\}, \{\text{rd}(\text{wr}(a, i, x), k)\},$
 $\{x, i, j\}, \{k\}, \{\text{rd}(a, j)\}, \{\text{rd}(a, k)\}$

Example

$\neg(j = k), \neg(\text{rd}(\text{wr}(a, i, x), j) = \text{rd}(a, j)), \neg(\text{rd}(\text{wr}(a, i, x), k) = \text{rd}(a, k))$

EUF solution (equivalence classes):

$\{a, \text{wr}(a, i, x)\}, \{\text{rd}(\text{wr}(a, i, x), j)\}, \{\text{rd}(\text{wr}(a, i, x), k)\},$
 $\{x, i, j\}, \{k\}, \{\text{rd}(a, j)\}, \{\text{rd}(a, k)\}$

Add violated lemma: $(i \neq k) \rightarrow (\text{rd}(\text{wr}(a, i, x), k) = \text{rd}(a, k))$

Example

$\neg(j = k), \neg(\text{rd}(\text{wr}(a, i, x), j) = \text{rd}(a, j)), \neg(\text{rd}(\text{wr}(a, i, x), k) = \text{rd}(a, k))$

EUF solution (equivalence classes):

$\{a, \text{wr}(a, i, x)\}, \{\text{rd}(\text{wr}(a, i, x), j)\}, \{\text{rd}(\text{wr}(a, i, x), k)\},$
 $\{x, i, j\}, \{k\}, \{\text{rd}(a, j)\}, \{\text{rd}(a, k)\}$

Add violated lemma: $(i \neq k) \rightarrow (\text{rd}(\text{wr}(a, i, x), k) = \text{rd}(a, k))$

EUF solution (equivalence classes):

$\{a, \text{wr}(a, i, x)\}, \{\text{rd}(\text{wr}(a, i, x), j)\}, \{\text{rd}(\text{wr}(a, i, x), k)\},$
 $\{x, j\}, \{i, k\}, \{\text{rd}(a, j)\}, \{\text{rd}(a, k)\}$

Example

$\neg(j = k), \neg(\text{rd}(\text{wr}(a, i, x), j) = \text{rd}(a, j)), \neg(\text{rd}(\text{wr}(a, i, x), k) = \text{rd}(a, k))$

EUF solution (equivalence classes):

$\{a, \text{wr}(a, i, x)\}, \{\text{rd}(\text{wr}(a, i, x), j)\}, \{\text{rd}(\text{wr}(a, i, x), k)\},$
 $\{x, i, j\}, \{k\}, \{\text{rd}(a, j)\}, \{\text{rd}(a, k)\}$

Add violated lemma: $(i \neq k) \rightarrow (\text{rd}(\text{wr}(a, i, x), k) = \text{rd}(a, k))$

EUF solution (equivalence classes):

$\{a, \text{wr}(a, i, x)\}, \{\text{rd}(\text{wr}(a, i, x), j)\}, \{\text{rd}(\text{wr}(a, i, x), k)\},$
 $\{x, \boxed{j}\}, \{\boxed{i}, k\}, \{\text{rd}(a, j)\}, \{\text{rd}(a, k)\}$

Add violated lemma: $(i \neq j) \rightarrow (\text{rd}(\text{wr}(a, i, x), j) = \text{rd}(a, j))$

Example

$\neg(j = k), \neg(\text{rd}(\text{wr}(a, i, x), j) = \text{rd}(a, j)), \neg(\text{rd}(\text{wr}(a, i, x), k) = \text{rd}(a, k))$

EUF solution (equivalence classes):

$\{a, \text{wr}(a, i, x)\}, \{\text{rd}(\text{wr}(a, i, x), j)\}, \{\text{rd}(\text{wr}(a, i, x), k)\},$
 $\{x, i, j\}, \{k\}, \{\text{rd}(a, j)\}, \{\text{rd}(a, k)\}$

Add violated lemma: $(i \neq k) \rightarrow (\text{rd}(\text{wr}(a, i, x), k) = \text{rd}(a, k))$

EUF solution (equivalence classes):

$\{a, \text{wr}(a, i, x)\}, \{\text{rd}(\text{wr}(a, i, x), j)\}, \{\text{rd}(\text{wr}(a, i, x), k)\},$
 $\{x, j\}, \{i, k\}, \{\text{rd}(a, j)\}, \{\text{rd}(a, k)\}$

Add violated lemma: $(i \neq j) \rightarrow (\text{rd}(\text{wr}(a, i, x), j) = \text{rd}(a, j))$

EUF solver returns **UNSAT**

- Most solvers use an **eager approach** for BV, not DPLL(T)
 - **Heavy preprocessing** based on **rewriting rules** + bit-blasting
 - **Example:** $(x_{[1]} \neq 0_{[1]}) \wedge (y_{[31]} :: x_{[1]} \% 2_{[32]} = 0_{[32]}) \mapsto$
 $(x_{[1]} = 1_{[1]}) \wedge (y_{[31]} :: x_{[1]} \% 2_{[32]} = 0_{[32]}) \mapsto$
 $(y_{[31]} :: 1_{[1]} \% 2_{[32]} = 0_{[32]}) \mapsto \perp$
 - Alternative: **lazy bit-blasting**, compatible with DPLL(T)
 - Use a second SAT solver as T-solver for BV
 - bit-blast only BV-atoms, not the whole formula
 - Boolean skeleton of the formula handled by the main SAT solver
 - **Easier integration** with other theories and functionalities based on a DPLL(T) architecture
 - Can integrate additional **specialized sub-solvers**
 - Eager still better performance-wise

Lazy bit-blasting: implementation

- For each **BV-atom** α occurring in the input formula, create a fresh Boolean “label” variable l_α , and bit-blast to SAT-BV the formula $(l_\alpha \leftrightarrow \alpha)$

- **Exploit SAT solving under assumptions**
 - When the main solver generates the BV-assignment $\alpha_1 \dots \alpha_n$
 - Invoke SAT-BV with the assumptions $l_{\alpha_1} \dots l_{\alpha_n}$
 - If unsat, generate an unsat core of the assumptions $l_{\alpha_i} \dots l_{\alpha_j}$
 - From its negation, generate a BV-lemma $\neg\alpha_i \vee \dots \vee \neg\alpha_j$ and send it to the main solver as a blocking clause, like in standard DPLL(T)

Outline

Introduction

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories

Quantifiers in DPLL(T)

Combination of theories

- Very often in practice **more than one theory** is needed

- **Example (from intro):**

$$\varphi \stackrel{\text{def}}{=} (x_1 \geq 0) \wedge (x_1 < 1) \wedge ((f(x_1) = f(0)) \rightarrow (\text{rd}(\text{wr}(P, x_2, x_3), x_2 + x_1) = x_3 + 1))$$

- How to build solvers for $\text{SMT}(T_1 \dots T_n)$ that are both **efficient** and **modular**?
- Can we **reuse** T_i -solvers and **combine** them?
- Under what conditions?
- How do we go from $\text{DPLL}(T)$ to $\text{DPLL}(T_1 \dots T_n)$?

The Nelson-Oppen method

- A general technique for combining T_i -solvers
- Requires:
 - T_i 's to have disjoint signatures, i.e. no symbols in common (other than $=$)
 - T_i 's to be stably-infinite, i.e. every quantifier-free T_i -satisfiable formula is satisfiable in an infinite model of T_i
 - Examples: EUF, LIA, LRA, A
 - Counterexample: BV
 - *(Extensions exist to deal with some non-stably-infinite theories)*

The Nelson-Oppen method

How it works (for $T_1 \cup T_2$)

- Preprocessing **purification** step on the input formula φ
 - **Pure formula:** no atom containing symbols of different T_i 's (except $=$)
 - By **labeling** subterms

- **Example:**

$$\varphi \stackrel{\text{def}}{=} \underbrace{f(x+3y)}_{l_1} + 4 \leq \underbrace{g(w)}_{l_2} \mapsto$$
$$(\underbrace{f(l_1)}_{l_3} + 4 \leq l_2) \wedge (l_1 = x+3y) \wedge (l_2 = g(w)) \mapsto$$
$$(l_3 + 4 \leq l_2) \wedge (l_1 = x+3y) \wedge (l_2 = g(w)) \wedge (f(l_1) = l_3)$$

The Nelson-Oppen method

How it works (for $T_1 \cup T_2$)

- Preprocessing **purification** step on the input formula φ
 - **Pure formula:** no atom containing symbols of different T_i 's (except $=$)
 - By **labeling** subterms

■ Example:

$$\varphi \stackrel{\text{def}}{=} f(\overbrace{x+3y}^{l_1}) + 4 \leq \overbrace{g(w)}^{l_2} \mapsto$$
$$(f(l_1) + 4 \leq l_2) \wedge (l_1 = x+3y) \wedge (l_2 = g(w)) \mapsto$$
$$(l_3 + 4 \leq l_2) \wedge (l_1 = x+3y) \wedge (l_2 = g(w)) \wedge (f(l_1) = l_3)$$

- T_i -solvers cooperate by **exchanging (disjunctions of) entailed interface equalities**
 - I.e., equalities between shared variables

The Nelson-Oppen method

How it works (for $T_1 \cup T_2$)

- Preprocessing **purification** step on the input formula φ
 - **Pure formula:** no atom containing symbols of different T_i 's (except $=$)
 - By **labeling** subterms

- **Example:**

$$\varphi \stackrel{\text{def}}{=} f(\overbrace{x + 3y}^{l_1}) + 4 \leq \overbrace{g(w)}^{l_2} \mapsto$$
$$(f(\overbrace{l_1}^{l_3}) + 4 \leq l_2) \wedge (l_1 = x + 3y) \wedge (l_2 = g(w)) \mapsto$$
$$(l_3 + 4 \leq l_2) \wedge (l_1 = x + 3y) \wedge (l_2 = g(w)) \wedge (f(l_1) = l_3)$$

- T_i -solvers cooperate by **exchanging (disjunctions of) entailed interface equalities**

- I.e., equalities between shared variables

Interface variables

Example

LIA $(x_1 \geq 0), (x_1 \leq 1), (x_2 \geq x_6)$
 $(x_2 \leq x_6 + 1), (x_5 = x_4 - 1)$
 $(x_3 = 0), (x_4 = 1)$

$\neg(f(x_1) = f(x_2)),$ EUF
 $\neg(f(x_2) = f(x_4)),$
 $(f(x_3) = x_5), (f(x_1) = x_6)$

Example

LIA $(x_1 \geq 0), (x_1 \leq 1), (x_2 \geq x_6)$
 $(x_2 \leq x_6 + 1), (x_5 = x_4 - 1)$
 $(x_3 = 0), (x_4 = 1)$

\models

$(x_1 = x_3) \vee (x_1 = x_4)$

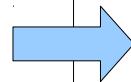
$\neg(f(x_1) = f(x_2)),$ EUF
 $\neg(f(x_2) = f(x_4)),$
 $(f(x_3) = x_5), (f(x_1) = x_6)$

Example

LIA $(x_1 \geq 0), (x_1 \leq 1), (x_2 \geq x_6)$
 $(x_2 \leq x_6 + 1), (x_5 = x_4 - 1)$
 $(x_3 = 0), (x_4 = 1)$

$$\models$$

$$(x_1 = x_3) \vee (x_1 = x_4)$$



$\neg(f(x_1) = f(x_2)),$ **EUF**
 $\neg(f(x_2) = f(x_4)),$
 $(f(x_3) = x_5), (f(x_1) = x_6)$

$$\begin{array}{c} (x_1 = x_3) \\ \models \\ (x_5 = x_6) \end{array}$$

Example

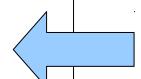
LIA $(x_1 \geq 0), (x_1 \leq 1), (x_2 \geq x_6)$
 $(x_2 \leq x_6 + 1), (x_5 = x_4 - 1)$
 $(x_3 = 0), (x_4 = 1)$

$$\models (x_1 = x_3) \vee (x_1 = x_4)$$

$$\models (x_5 = x_6)$$
$$\models (x_2 = x_3) \vee (x_2 = x_4)$$

EUF
 $\neg(f(x_1) = f(x_2)),$
 $\neg(f(x_2) = f(x_4)),$
 $(f(x_3) = x_5), (f(x_1) = x_6)$

$$\begin{array}{c} (x_1 = x_3) \\ \models (x_5 = x_6) \end{array}$$



Example

LIA $(x_1 \geq 0), (x_1 \leq 1), (x_2 \geq x_6)$
 $(x_2 \leq x_6 + 1), (x_5 = x_4 - 1)$
 $(x_3 = 0), (x_4 = 1)$

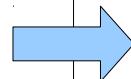
\models

$(x_1 = x_3) \vee (x_1 = x_4)$

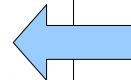
$(x_5 = x_6)$

\models

$(x_2 = x_3) \vee (x_2 = x_4)$



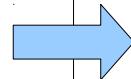
$\neg(f(x_1) = f(x_2)), \text{ EUF}$
 $\neg(f(x_2) = f(x_4)),$
 $(f(x_3) = x_5), (f(x_1) = x_6)$



$(x_1 = x_3)$

\models

$(x_5 = x_6)$



$(x_2 = x_3)$

Example

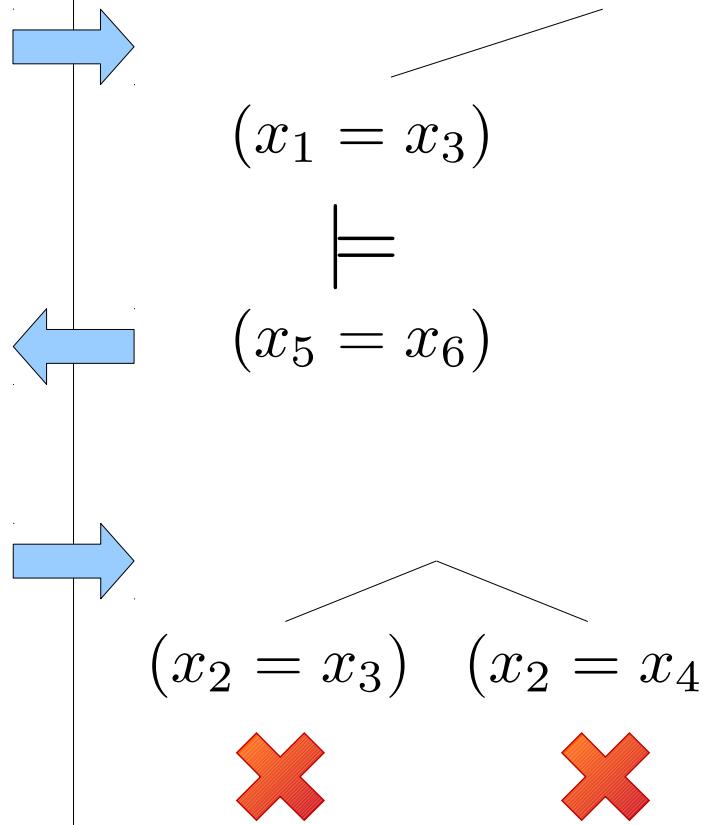
LIA $(x_1 \geq 0), (x_1 \leq 1), (x_2 \geq x_6)$
 $(x_2 \leq x_6 + 1), (x_5 = x_4 - 1)$
 $(x_3 = 0), (x_4 = 1)$

$$\models (x_1 = x_3) \vee (x_1 = x_4)$$

$$\models (x_5 = x_6)$$

$$\models (x_2 = x_3) \vee (x_2 = x_4)$$

EUF
 $\neg(f(x_1) = f(x_2)),$
 $\neg(f(x_2) = f(x_4)),$
 $(f(x_3) = x_5), (f(x_1) = x_6)$



Example

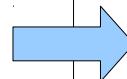
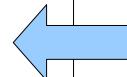
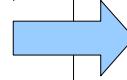
LIA $(x_1 \geq 0), (x_1 \leq 1), (x_2 \geq x_6)$
 $(x_2 \leq x_6 + 1), (x_5 = x_4 - 1)$
 $(x_3 = 0), (x_4 = 1)$

$$\models (x_1 = x_3) \vee (x_1 = x_4)$$

$$(x_5 = x_6)$$

$$\models (x_2 = x_3) \vee (x_2 = x_4)$$

EUF $\neg(f(x_1) = f(x_2)),$
 $\neg(f(x_2) = f(x_4)),$
 $(f(x_3) = x_5), (f(x_1) = x_6)$



$$(x_1 = x_3) \quad (x_1 = x_4)$$

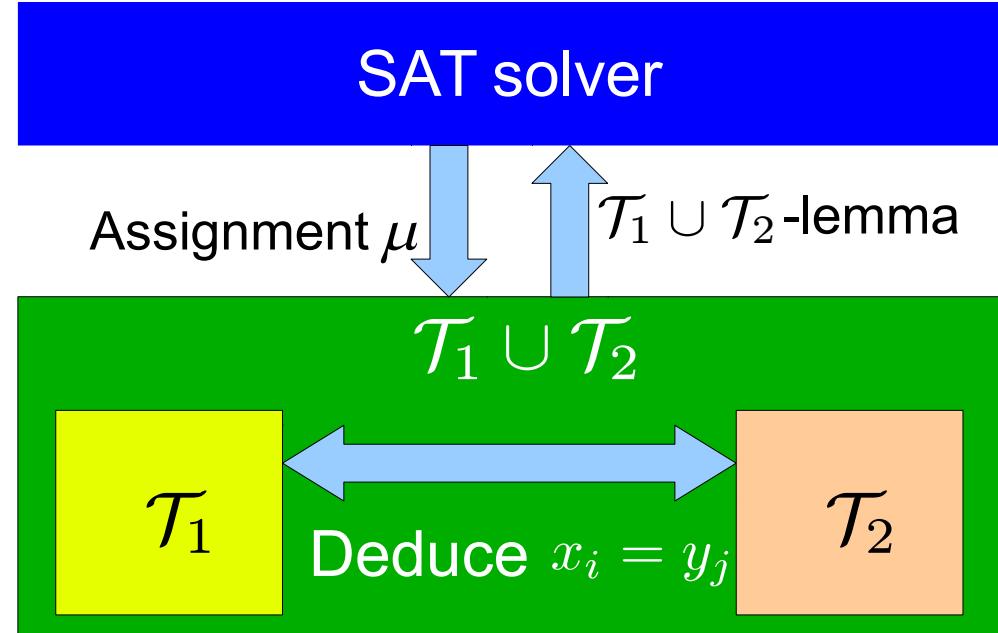
$$\models (x_5 = x_6)$$

$$(x_2 = x_3) \quad (x_2 = x_4)$$

No more deductions possible

DPLL(T) for combined theories

- Traditional approach:
a **single** combined
Nelson-Oppen T -solver
- T_i -solvers exchange
(disjunctions of) implied
interface equalities
internally
 - Interface equalities
invisible to the SAT solver
- Drawbacks: T_i -solvers need to:
 - be **deduction complete** for interface equalities
 - be able to perform case splits internally



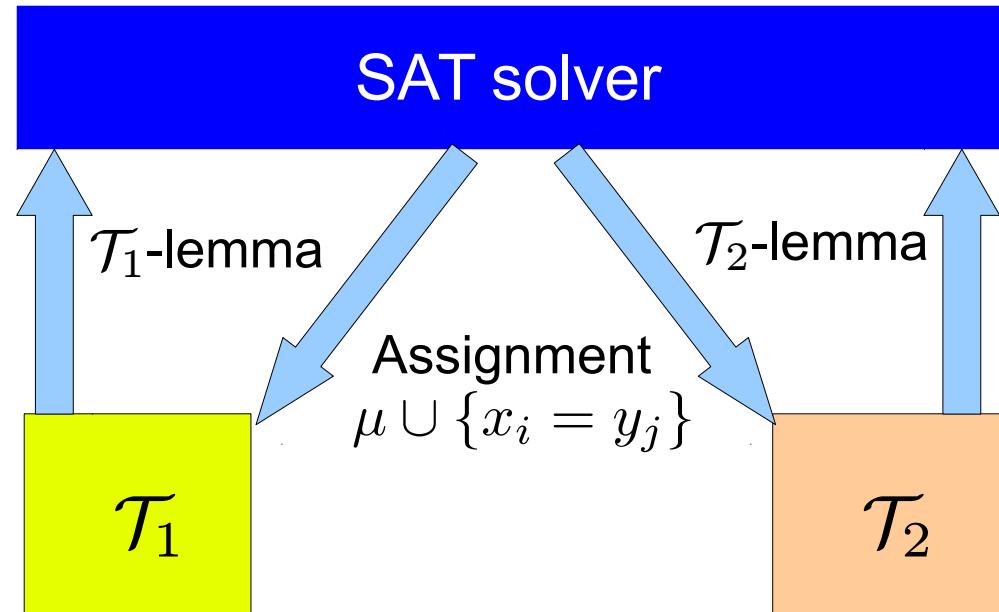
Delayed Theory Combination

■ Alternative to traditional approach

- Each T_i -solver interacts directly and only with the SAT solver
- SAT solver takes care of (all or part of) the combination
 - **Augment the Boolean search space** with the possible interface equalities ($x_i = y_j$)

■ Advantages:

- No need of complete deduction of interface equalities
- Case analysis via splitting on-demand



■ Model-based heuristic:

- Initially, no interface equalities generated
- When a solution is found, **check against all the possible interface equalities**
 - If T_1 and T_2 agree on the implied equalities, return **SAT**
 - Otherwise, branch on equalities implied by T_1 -model but not by T_2 -model
- Optimistic approach, similar to axiom instantiation

■ Still allow T_i -solvers to **exchange equalities internally**

- But **no requirement of completeness**
- **Avoids** “polluting” the SAT space with equality deductions leading to conflicts

Example

LIA $(x_1 \geq 0), (x_1 \leq 1), (x_2 \geq x_6)$
 $(x_2 \leq x_6 + 1), (x_5 = x_4 - 1)$
 $(x_3 = 0), (x_4 = 1)$

$\neg(f(x_1) = f(x_2)),$ EUF
 $\neg(f(x_2) = f(x_4)),$
 $(f(x_3) = x_5), (f(x_1) = x_6)$

Example

LIA $(x_1 \geq 0), (x_1 \leq 1), (x_2 \geq x_6)$
 $(x_2 \leq x_6 + 1), (x_5 = x_4 - 1)$
 $(x_3 = 0), (x_4 = 1)$

$x_1 \mapsto 1 \quad x_2 \mapsto 2$
LIA-model: $x_3 \mapsto 0 \quad x_4 \mapsto 1$
 $x_5 \mapsto 0 \quad x_6 \mapsto 1$

\models

$(x_1 = x_4)$

$\neg(f(x_1) = f(x_2)),$ **EUF**
 $\neg(f(x_2) = f(x_4)),$
 $(f(x_3) = x_5), (f(x_1) = x_6)$

$\{x_1\} \{x_2\} \{x_3\} \{x_4\}$
EUF-model: $\{x_5, f(x_3)\} \{x_6, f(x_1)\}$
 $\{f(x_2)\} \{f(x_4)\}$

$\not\models$

$(x_1 = x_4)$

Branch on $(x_1 = x_4)$

$(x_1 = x_4)$

Example

LIA $(x_1 \geq 0), (x_1 \leq 1), (x_2 \geq x_6)$
 $(x_2 \leq x_6 + 1), (x_5 = x_4 - 1)$
 $(x_3 = 0), (x_4 = 1)$

LIA-model: $x_1 \mapsto 1 \quad x_2 \mapsto 2$
 $x_3 \mapsto 0 \quad x_4 \mapsto 1$
 $x_5 \mapsto 0 \quad x_6 \mapsto 1$

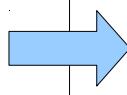
\models

$(x_3 = x_5)$
 $(x_4 = x_6)$

$\neg(f(x_1) = f(x_2)),$ **EUF**
 $\neg(f(x_2) = f(x_4)),$
 $(f(x_3) = x_5), (f(x_1) = x_6)$

EUF-model: $\{x_1, x_4\} \quad \{x_2\} \quad \{x_3\}$
 $\{x_5, f(x_3)\}$
 $\{x_6, f(x_1), f(x_4)\} \{f(x_2)\}$
 $\not\models$

$(x_3 = x_5)$
 $(x_4 = x_6)$



...

$(x_1 = x_4)$
 $(x_3 = x_5)$
 $(x_4 = x_6)$

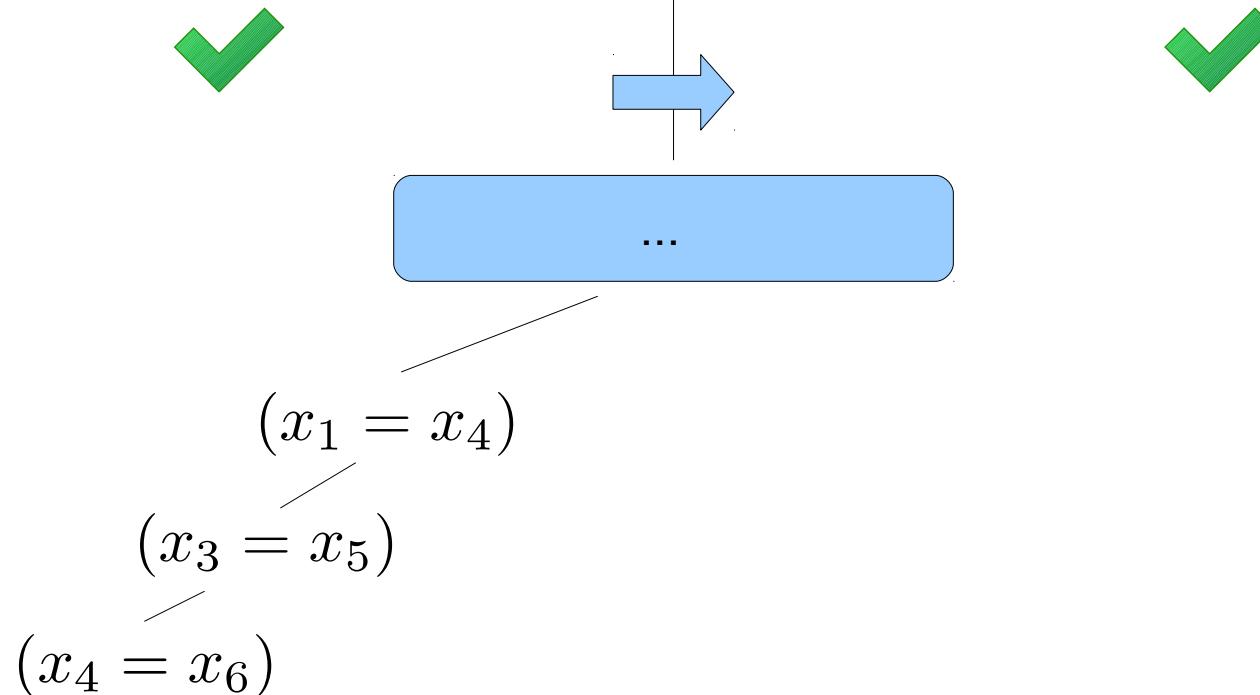
Example

LIA $(x_1 \geq 0), (x_1 \leq 1), (x_2 \geq x_6)$
 $(x_2 \leq x_6 + 1), (x_5 = x_4 - 1)$
 $(x_3 = 0), (x_4 = 1)$

$x_1 \mapsto 1 \quad x_2 \mapsto 2$
LIA-model: $x_3 \mapsto 0 \quad x_4 \mapsto 1$
 $x_5 \mapsto 0 \quad x_6 \mapsto 1$

$\neg(f(x_1) = f(x_2)),$ **EUF**
 $\neg(f(x_2) = f(x_4)),$
 $(f(x_3) = x_5), (f(x_1) = x_6)$

$\{x_1, x_4, x_6, f(x_1), f(x_4)\}$
EUF-model: $\{x_3, x_5, f(x_3)\}$
 $\{f(x_2)\} \{x_2\}$



Outline

Introduction

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories

Quantifiers in DPLL(T)

- SMT solvers mostly deal with **quantifier-free** problems
 - Often good compromise between **expressiveness** and **efficiency**
 - *A key factor for the success of SMT*
- Yet, in practice it is useful to incorporate *some* support for **quantifiers**

- **Examples:**

- Support user-provided axioms/assertions

$$\forall i, j. (i \leq j) \rightarrow (\text{rd}(a, i) \leq \text{rd}(a, j)) \quad \text{"a is sorted"}$$

- Axiomatisation of extra theories w/o built-in support

$$\forall x. p(x, x) \quad \forall x, y, z. p(x, y) \wedge p(y, z) \rightarrow p(x, z)$$

$$\forall x, y. p(x, y) \wedge p(y, x) \rightarrow x = y$$

Quantifiers in DPLL(T)

- **Assumption:** formulas of the form $\psi \wedge \bigwedge_j \forall \vec{x}. D_j(\vec{x})$
 ψ quantifier-free
 - Can always remove existentials by **Skolemization**
$$\forall x. \exists y. \varphi(x, y) \mapsto \forall x. \varphi(f_y(x)), \quad f_y \text{ fresh}$$
- **Main idea:** handle quantifiers via **axiom instantiation**
 - Pick a quantified clause $\forall \vec{x}. D(\vec{x})$, heuristically instantiate its variables with quantifier-free terms $\vec{t}_1 \dots \vec{t}_k$, and add the generated clauses $\{D(\vec{t}_1) \dots D(\vec{t}_k)\}$ to the SAT solver
 - terminate when **unsat** is detected

Quantifiers in DPLL(\mathcal{T})

- **Assumption:** formulas of the form $\psi \wedge \bigwedge_j \forall \vec{x}. D_j(\vec{x})$
 ψ quantifier-free
 - Can always remove existentials by **Skolemization**
$$\forall x. \exists y. \varphi(x, y) \mapsto \forall x. \varphi(f_y(x)), \quad f_y \text{ fresh}$$
- **Main idea:** handle quantifiers via **axiom instantiation**
 - Pick a quantified clause $\forall \vec{x}. D(\vec{x})$, heuristically instantiate its variables with quantifier-free terms $\vec{t}_1 \dots \vec{t}_k$, and add the generated clauses $\{D(\vec{t}_1) \dots D(\vec{t}_k)\}$ to the SAT solver
 - terminate when **unsat** is detected
- **Problems:**
 - how to choose the **relevant instances** to add?
 - how to detect **satisfiable formulas**?

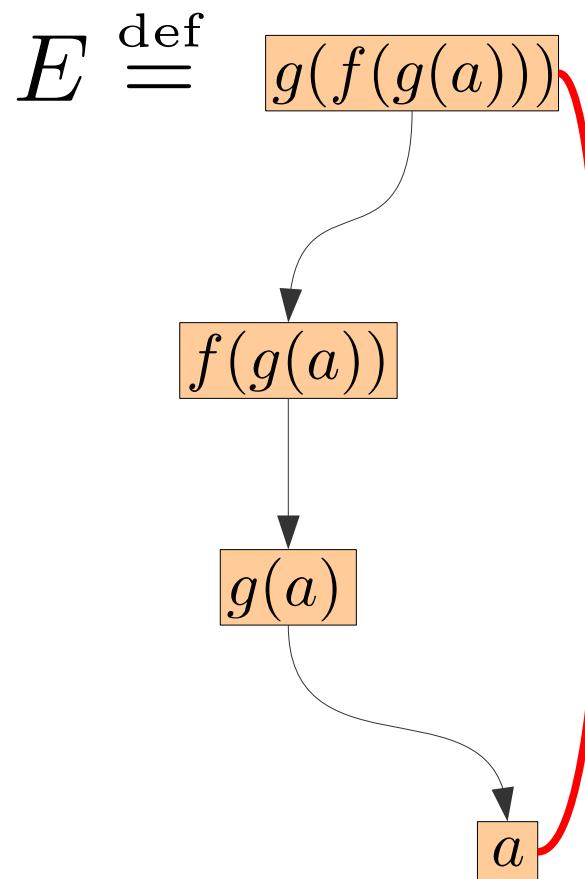
- Discover relevant instances using the **EUF congruence closure graph (E-graph)**
- Given an axiom $\forall \vec{x}. D(\vec{x})$, an E-graph E , a *trigger* $p(\vec{x})$ and a *substitution* θ from vars to ground terms:
 - $D(\vec{x})\theta$ is relevant \Leftrightarrow exists $t \in E$ such that $E \models (t = p(\vec{x})\theta)$
- **E-matching**: for each axiom $\forall \vec{x}. D_i(\vec{x})$ with trigger $p_i(\vec{x})$
 - generate all substitutions θ_i^j s.t. $E \models (t = p_i(\vec{x})\theta_i^j)$, $t \in E$
 - generate the axiom instances $D_i(\vec{x})\theta_i^j$
 - reason modulo equivalence classes in E
 - discard substitutions that are equivalent modulo E

- Discover relevant instances using the **EUF congruence closure graph (E-graph)**
- Given an axiom $\forall \vec{x}. D(\vec{x})$, an E-graph E , a *trigger* $p(\vec{x})$ and a *substitution* θ from vars to ground terms:
 - $D(\vec{x})\theta$ is relevant \Leftrightarrow exists $t \in E$ such that $E \models (t = p(\vec{x})\theta)$
- **E-matching**: for each axiom $\forall \vec{x}. D_i(\vec{x})$ with trigger $p_i(\vec{x})$
 - generate all substitutions θ_i^j s.t. $E \models (t = p_i(\vec{x})\theta_i^j)$, $t \in E$
 - generate the axiom instances $D_i(\vec{x})\theta_i^j$
 - reason modulo equivalence classes in E
 - discard substitutions that are equivalent modulo E

user-provided or syntactically determined from $D_i(\vec{x})$

Example

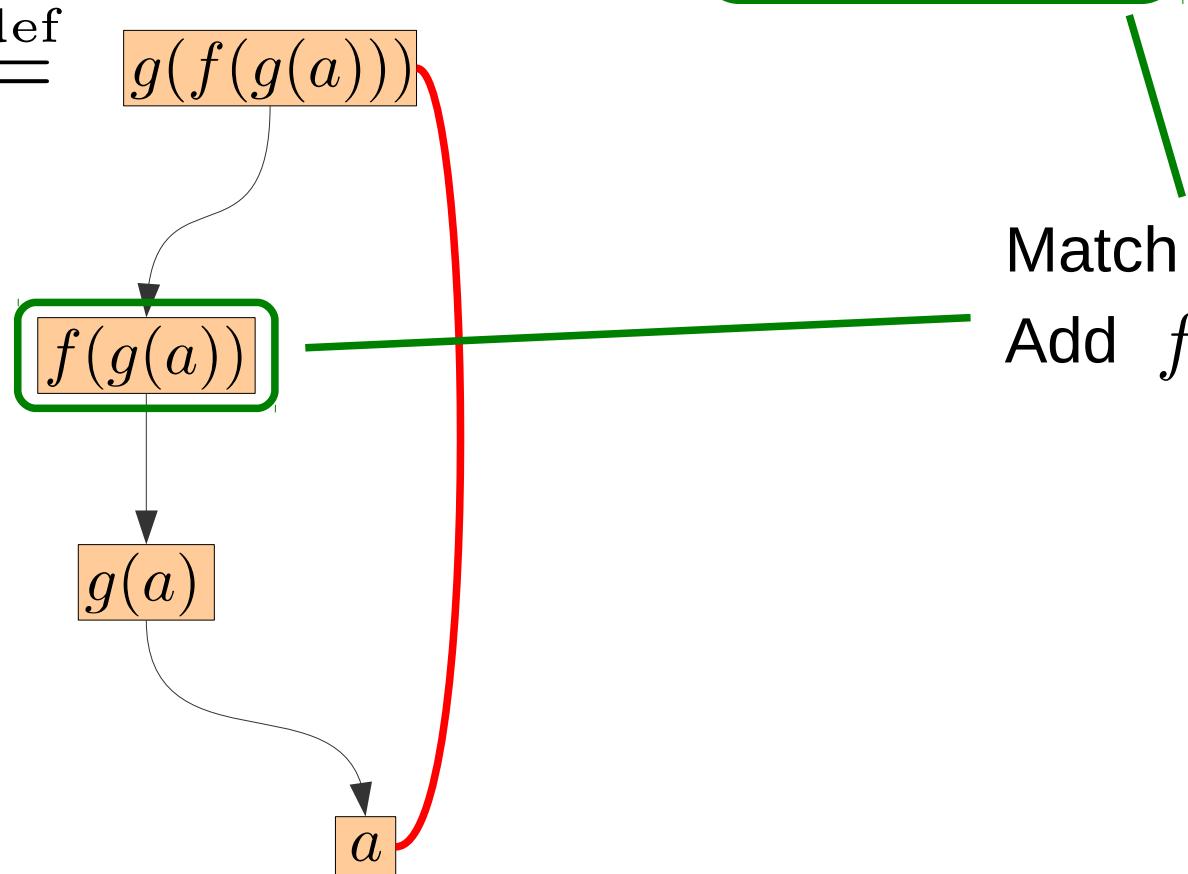
$$\varphi \stackrel{\text{def}}{=} \neg(g(f(g(a)))) = a) \wedge \underbrace{\forall x.(f(x) = x)}_{\text{trigger } f(x)} \wedge \underbrace{\forall x.(g(g(x)) = x)}_{\text{trigger } g(g(x))}$$



Example

$$\varphi \stackrel{\text{def}}{=} \neg(g(f(g(a)))) = a) \wedge \underbrace{\forall x.(f(x) = x)}_{\text{trigger } f(x)} \wedge \underbrace{\forall x.(g(g(x)) = x)}_{\text{trigger } g(g(x))}$$

$$E \stackrel{\text{def}}{=} [g(f(g(a)))]$$

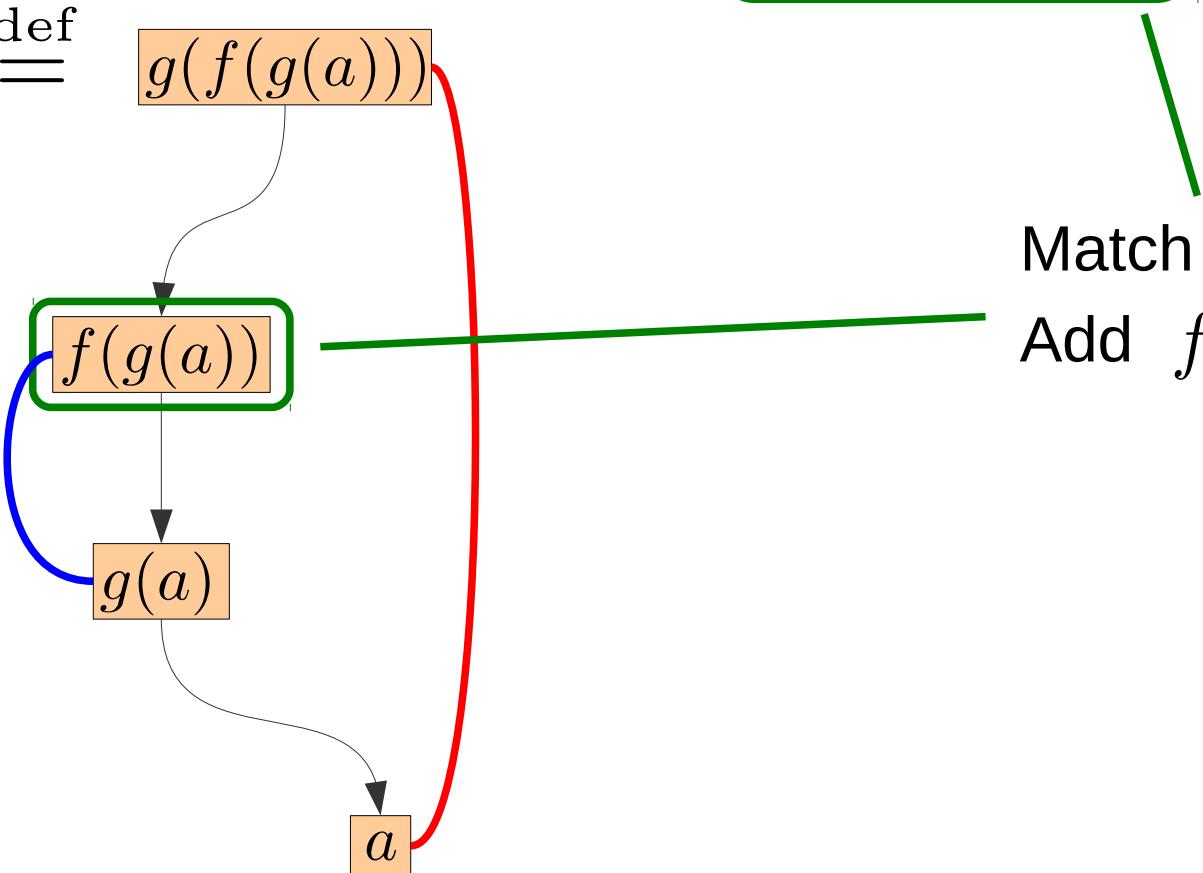


Match with $\theta \stackrel{\text{def}}{=} \{x \mapsto g(a)\}$
Add $f(g(a)) = g(a)$

Example

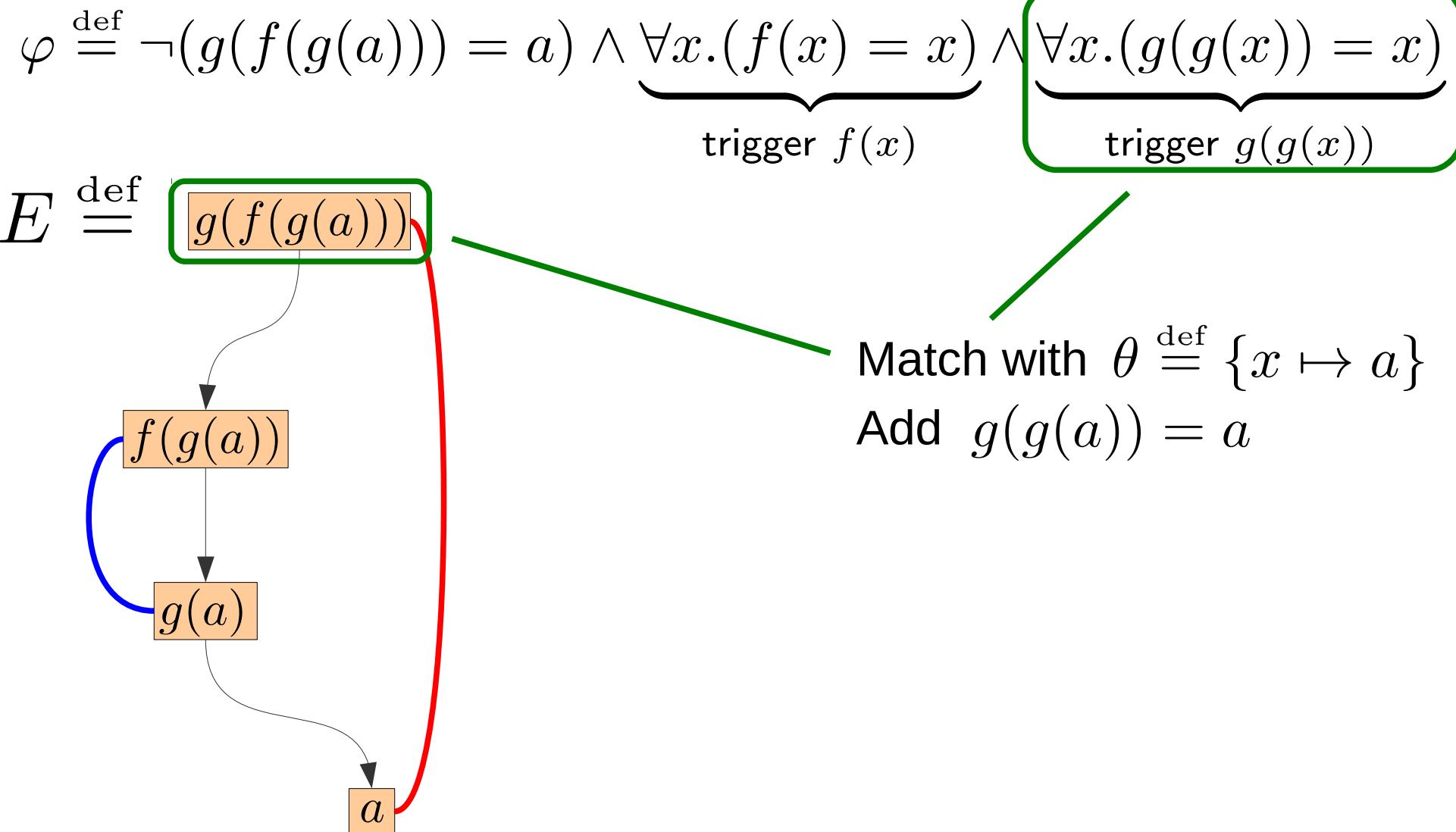
$$\varphi \stackrel{\text{def}}{=} \neg(g(f(g(a)))) = a) \wedge \underbrace{\forall x.(f(x) = x)}_{\text{trigger } f(x)} \wedge \underbrace{\forall x.(g(g(x)) = x)}_{\text{trigger } g(g(x))}$$

$$E \stackrel{\text{def}}{=} [g(f(g(a)))]$$

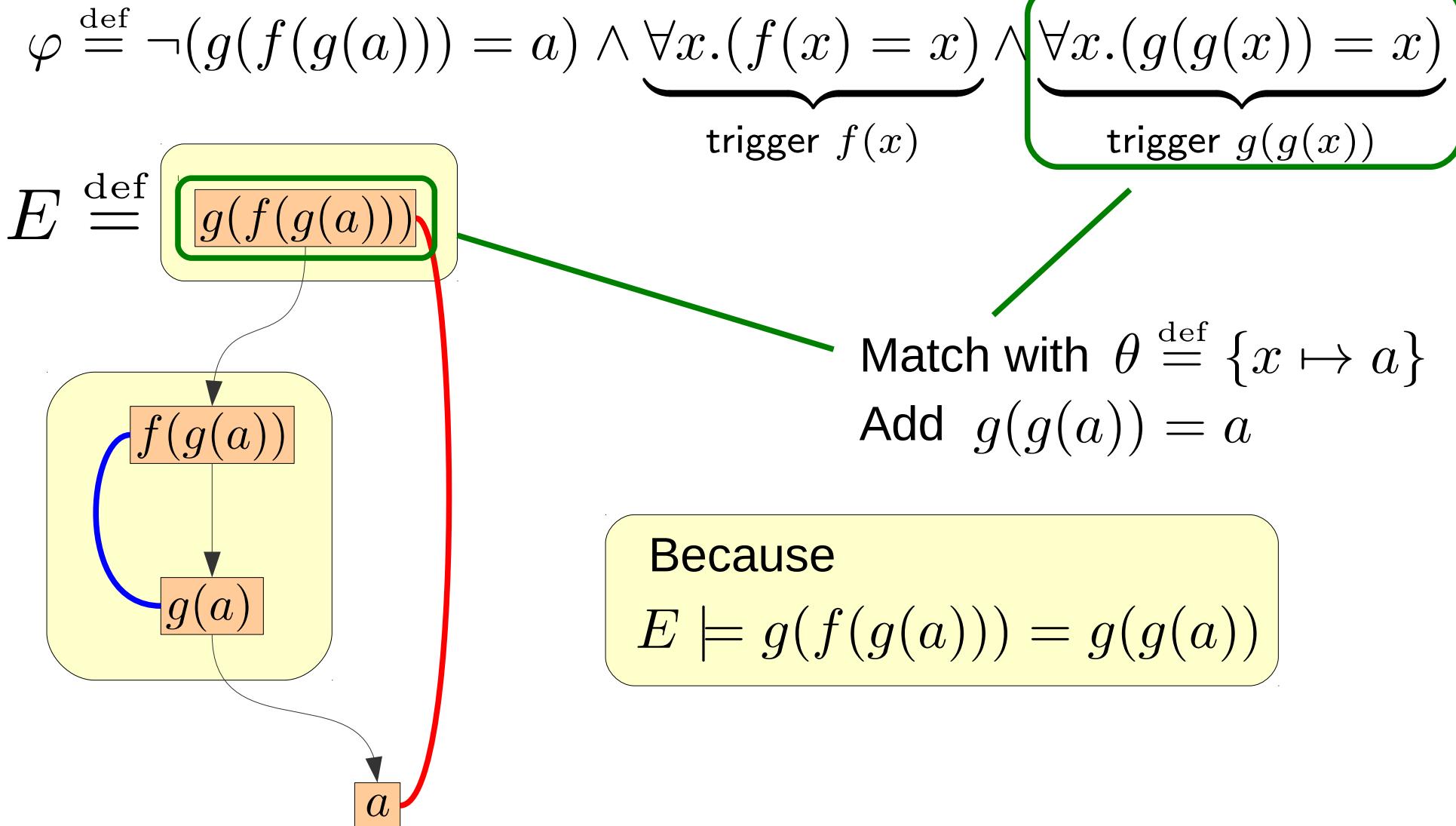


Match with $\theta \stackrel{\text{def}}{=} \{x \mapsto g(a)\}$
Add $f(g(a)) = g(a)$

Example



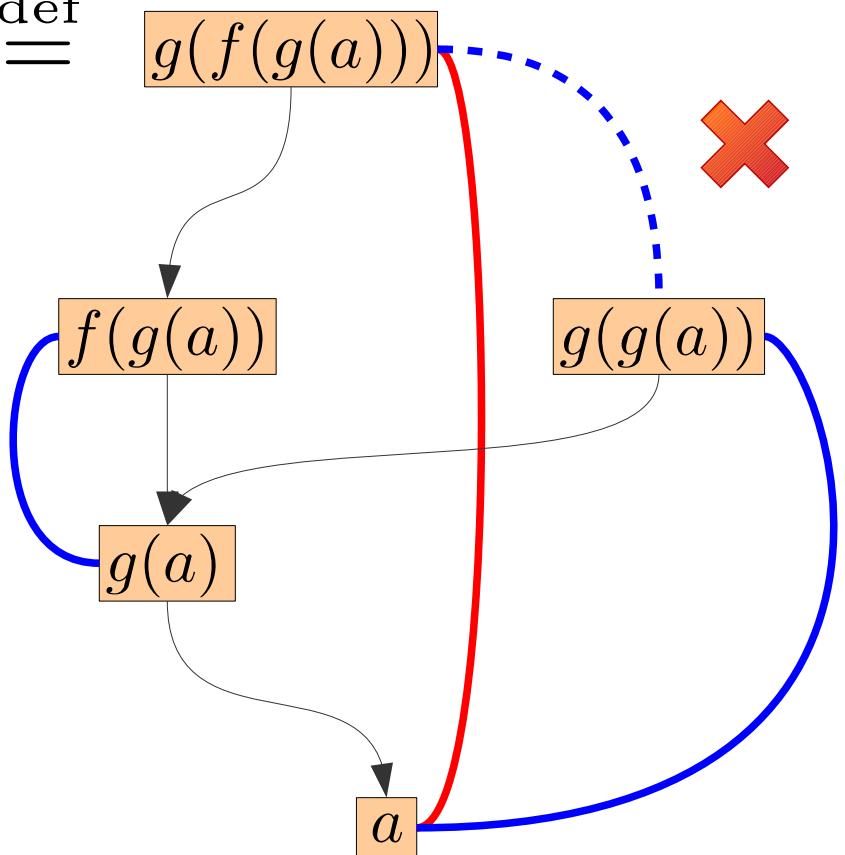
Example



Example

$$\varphi \stackrel{\text{def}}{=} \neg(g(f(g(a)))) = a) \wedge \underbrace{\forall x.(f(x) = x)}_{\text{trigger } f(x)} \wedge \underbrace{\forall x.(g(g(x)) = x)}_{\text{trigger } g(g(x))}$$

$$E \stackrel{\text{def}}{=}$$



■ Advantages:

- Integrates smoothly with DPLL(T)
- Fast and efficient at finding “shallow” proofs in big formulas
 - A typical scenario in SMT-based verification

■ However, various drawbacks:

- Can never say **sat**, but is **not even refutationally complete**
- Needs **ground seeds**
 - Example: $(\forall x.P(x)) \wedge (\forall x.\neg P(x))$
- Sensitive to **bad triggers**
 - Example: $(\forall x.f(g(x)) = x)$ [with trigger $f(g(x))$]
 $(g(a) = c) \wedge (g(b) = c) \wedge \neg(a = b)$

Model-based Instantiation

- Idea: $\varphi \stackrel{\text{def}}{=} \psi \wedge \bigwedge_i (\forall \vec{x}. D_i(\vec{x}))$
 - build a **model** M for ψ
 - **check** if M satisfies the quantified axioms $\bigwedge_i (\forall \vec{x}. D_i \vec{x})$
 - If yes, return **sat**
otherwise, generate an **instance** that **blocks** the bad model

Model-based Instantiation

- **Idea:** $\varphi \stackrel{\text{def}}{=} \psi \wedge \bigwedge_i (\forall \vec{x}. D_i(\vec{x}))$
 - build a **model** M for ψ
 - **check** if M satisfies the quantified axioms $\bigwedge_i (\forall \vec{x}. D_i \vec{x})$
 - If yes, return **sat**
otherwise, generate an **instance** that **blocks** the bad model
- **How:**
 - Use a **symbolic representation** for M , using **lambda-terms**
 - **Example:** $(f(a) = 1) \wedge (a > b) \wedge (f(b) > f(a) + 1)$

$$M \stackrel{\text{def}}{=} \{a \mapsto 1, b \mapsto 0, f \mapsto \lambda x.\text{ite}(x = 0, 3, \text{ite}(x = 1, 1, 0))\}$$

Model-based Instantiation

- **Idea:** $\varphi \stackrel{\text{def}}{=} \psi \wedge \bigwedge_i (\forall \vec{x}. D_i(\vec{x}))$
 - build a **model** M for ψ
 - **check** if M satisfies the quantified axioms $\bigwedge_i (\forall \vec{x}. D_i \vec{x})$
 - If yes, return **sat**
otherwise, generate an **instance** that **blocks** the bad model
- **How:**
 - Use a **symbolic representation** for M , using **lambda-terms**
 - **Example:** $(f(a) = 1) \wedge (a > b) \wedge (f(b) > f(a) + 1)$

$$M \stackrel{\text{def}}{=} \{a \mapsto 1, b \mapsto 0, f \mapsto \lambda x. \text{ite}(x = 0, 3, \text{ite}(x = 1, 1, 0))\}$$
 - **Check unsatisfiability** of $\neg \forall \vec{x}. D_i(\vec{x})[M(c)/c]$ with SMT
 - **Example:** $\neg \forall x. (f(x) < x + a)[M(c)/c] \mapsto$

$$\exists x. \neg(\text{ite}(x = 0, 3, \text{ite}(x = 1, 1, 0)) < x + 1)$$

Example

$$\varphi \stackrel{\text{def}}{=} \overbrace{(f(a) = 1) \wedge (a > b) \wedge (f(b) > f(a) + 1)}^{\psi} \wedge \forall x.(f(x) \geq b) \wedge (f(x) < a + b)$$

Example

$$\varphi \stackrel{\text{def}}{=} \overbrace{(f(a) = 1) \wedge (a > b) \wedge (f(b) > f(a) + 1)}^{\psi} \wedge \forall x.(f(x) \geq b) \wedge (f(x) < a + b)$$

■ Check ψ

$$M \stackrel{\text{def}}{=} \{a \mapsto 1, b \mapsto 0, f \mapsto \lambda x.\text{ite}(x = 0, 3, \text{ite}(x = 1, 1, 0))\}$$

Example

$$\varphi \stackrel{\text{def}}{=} \overbrace{(f(a) = 1) \wedge (a > b) \wedge (f(b) > f(a) + 1)}^{\psi} \wedge \forall x. (f(x) \geq b) \wedge (f(x) < a + b)$$

- Check ψ

$$M \stackrel{\text{def}}{=} \{a \mapsto 1, b \mapsto 0, f \mapsto \lambda x. \text{ite}(x = 0, 3, \text{ite}(x = 1, 1, 0))\}$$

- Check $M \models (\forall x. (f(x) \geq b) \wedge (f(x) < a + b))$, i.e.
 $\neg((\text{ite}(x = 0, 3, \text{ite}(x = 1, 1, 0)) \geq 0) \wedge (\text{ite}(x = 0, 3, \text{ite}(x = 1, 1, 0)) < 1 + 0)) \models \perp$

Example

$$\varphi \stackrel{\text{def}}{=} \overbrace{(f(a) = 1) \wedge (a > b) \wedge (f(b) > f(a) + 1)}^{\psi} \wedge \forall x. (f(x) \geq b) \wedge (f(x) < a + b)$$

- Check ψ

$$M \stackrel{\text{def}}{=} \{a \mapsto 1, b \mapsto 0, f \mapsto \lambda x. \text{ite}(x = 0, 3, \text{ite}(x = 1, 1, 0))\}$$

- Check $M \models (\forall x. (f(x) \geq b) \wedge (f(x) < a + b))$, i.e.

$$\neg((\text{ite}(x = 0, 3, \text{ite}(x = 1, 1, 0)) \geq 0) \wedge (\text{ite}(x = 0, 3, \text{ite}(x = 1, 1, 0)) < 1 + 0)) \models \perp$$

- Counterexample: $\{x \mapsto 0\}$

Example

$$\varphi \stackrel{\text{def}}{=} \overbrace{(f(a) = 1) \wedge (a > b) \wedge (f(b) > f(a) + 1)}^{\psi} \wedge \forall x. (f(x) \geq b) \wedge (f(x) < a + b)$$

- Check ψ

$$M \stackrel{\text{def}}{=} \{a \mapsto 1, b \mapsto 0, f \mapsto \lambda x. \text{ite}(x = 0, 3, \text{ite}(x = 1, 1, 0))\}$$

- Check $M \models (\forall x. (f(x) \geq b) \wedge (f(x) < a + b))$, i.e.

$$\neg((\text{ite}(x = 0, 3, \text{ite}(x = 1, 1, 0)) \geq 0) \wedge (\text{ite}(x = 0, 3, \text{ite}(x = 1, 1, 0)) < 1 + 0)) \models \perp$$

- Counterexample: $\{x \mapsto 0\}$

- Generated instance: $(f(b) \geq b) \wedge (f(b) < a + b)$

Example

$$\varphi \stackrel{\text{def}}{=} \overbrace{(f(a) = 1) \wedge (a > b) \wedge (f(b) > f(a) + 1)}^{\psi} \wedge \forall x. (f(x) \geq b) \wedge (f(x) < a + b)$$

- Check $\psi \wedge (f(b) \geq b) \wedge (f(b) < a + b)$

$$M \stackrel{\text{def}}{=} \{a \mapsto 3, b \mapsto 1, f \mapsto \lambda x. \text{ite}(x = 1, 3, 1)\}$$

- Check $M \models (\forall x. (f(x) \geq b) \wedge (f(x) < a + b))$, i.e.
 $\neg((\text{ite}(x = 1, 3, 1) \geq 1) \wedge (\text{ite}(x = 1, 3, 1) < 3 + 1)) \models \perp$

SAT

Complete Instantiation

- No hope for a complete procedure in general
 - FOL without theories is only **semi-decidable**...
 - ...and in fact **undecidable** with (some) theories (e.g. LIA)

- However, many decidable fragments exist
 - With suitable instantiation strategies, model-based techniques can be applied effectively

- **Idea:** search for models interpreting quantified variables over **finite domains**
 - with finite domain, **complete instantiation is possible**
 - if the domains are small (and the instantiation smart), might also be **practical**
 - Applicable when quantified vars range over **uninterpreted sorts**

- **Idea:** search for models interpreting quantified variables over **finite domains**
 - with finite domain, **complete instantiation is possible**
 - if the domains are small (and the instantiation smart), might also be **practical**
 - Applicable when quantified vars range over **uninterpreted sorts**
- **How:**
 - Add a T -solver for **cardinality constraints** on uninterpreted sorts
 - Use **splitting on-demand** with $\text{card. lemmas}(|S| \leq k) \vee (|S| > k)$
 - Tightly integrated with EUF solver
 - When “finite” model is found, **instantiate exhaustively** the axioms
 - But **avoid redundant instances**
 - Return **sat** if a model is found

Example

$$\varphi \stackrel{\text{def}}{=} \underbrace{\neg(f(a) = g(b))}_{\psi} \wedge \forall x. \neg(f(x) = f(g(x)))$$

Example

$$\varphi \stackrel{\text{def}}{=} \underbrace{\neg(f(a) = g(b))}_{\psi} \wedge \forall x. \neg(f(x) = f(g(x)))$$

- Find model for ψ : $M \stackrel{\text{def}}{=} \{a, f(a)\} \cup \{b, g(b)\}$

Example

$$\varphi \stackrel{\text{def}}{=} \underbrace{\neg(f(a) = g(b))}_{\psi} \wedge \forall x. \neg(f(x) = f(g(x)))$$

- Find model for ψ : $M \stackrel{\text{def}}{=} \begin{cases} \{a, f(a)\} \\ \{b, g(b)\} \end{cases}$
- Try cardinality $(|S| \leq 1)$

Example

$$\varphi \stackrel{\text{def}}{=} \underbrace{\neg(f(a) = g(b))}_{\psi} \wedge \forall x. \neg(f(x) = f(g(x)))$$

- Find model for ψ : $M \stackrel{\text{def}}{=} \begin{cases} \{a, f(a)\} \\ \{b, g(b)\} \end{cases}$
- Try cardinality $(|S| \leq 1)$
- Try cardinality $(|S| \leq 2)$

Example

$$\varphi \stackrel{\text{def}}{=} \underbrace{\neg(f(a) = g(b))}_{\psi} \wedge \forall x. \neg(f(x) = f(g(x)))$$

- Find model for ψ : $M \stackrel{\text{def}}{=} \{a, f(a)\} \cup \{b, g(b)\}$
- Try cardinality $(|S| \leq 1)$
- Try cardinality $(|S| \leq 2)$
- Generate instances using representatives of equiv. classes

$$I_1 \stackrel{\text{def}}{=} \neg(f(a) = f(g(a))) \quad I_2 \stackrel{\text{def}}{=} \neg(f(b) = f(g(b)))$$

- Check satisfiability of $\psi \wedge (|S| \leq 2) \wedge I_1 \wedge I_2$

Example

$$\varphi \stackrel{\text{def}}{=} \underbrace{\neg(f(a) = g(b))}_{\psi} \wedge \forall x. \neg(f(x) = f(g(x)))$$

- Find model for ψ : $M \stackrel{\text{def}}{=} \begin{cases} \{a, f(a)\} \\ \{b, g(b)\} \end{cases}$
- Try cardinality $(|S| \leq 1)$
- Try cardinality $(|S| \leq 2)$
- Generate instances using representatives of equiv. classes

$$I_1 \stackrel{\text{def}}{=} \neg(f(a) = f(g(a))) \quad I_2 \stackrel{\text{def}}{=} \neg(f(b) = f(g(b)))$$

- Check satisfiability of $\psi \wedge (|S| \leq 2) \wedge I_1 \wedge I_2$

$$M \stackrel{\text{def}}{=} \begin{cases} \{a, f(a), f(g(b))\} \\ \{b, g(b), f(g(a)), f(b)\} \end{cases}$$

SAT

Selected bibliography

DISCLAIMER: this is not meant to be complete, just a starting point. Apologies to missing authors/works

■ SMT in general and DPLL(T)

- Nieuwenhuis, Oliveras, Tinelli. **Solving SAT and SAT Modulo Theories: From an abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T)**. J. ACM 2006
- Sebastiani. **Lazy Satisfiability Modulo Theories**. JSAT 2007
- Barrett, Sebastiani, Seshia, Tinelli. **Satisfiability Modulo Theories**. SAT handbook 2009

■ Theory solvers

- Detlefs, Nelson, Saxe. **Simplify: a theorem prover for program checking**. J. ACM 2005
- Nieuwenhuis, Oliveras. **Fast congruence closure and extensions**. Inf. Comput. 2007

■ Theory solvers (cont'd)

- Dutertre, de Moura. **A Fast Linear-Arithmetic Solver for DPLL(T)**. CAV 2006
- de Moura, Bjørner. **Model-based Theory Combination**. Electr. Notes Theor. Comput. Sci. 2008
- Brummayer, Biere. **Lemmas on Demand for the Extensional Theory of Arrays**. JSAT 2009
- de Moura, Bjørner. **Generalized, efficient array decision procedures**. FMCAD 2009
- Jovanovic, de Moura. **Cutting to the Chase - Solving Linear Integer Arithmetic**. J. Autom. Reasoning 2013
- Hadarean, Bansal, Jovanovic, Barrett, Tinelli. **A Tale of Two Solvers: Eager and Lazy Approaches to Bit-Vectors**. CAV 2014

■ Quantifiers

- de Moura, Bjørner. **Efficient E-Matching for SMT Solvers.** CADE 2007
- Ge, de Moura. **Complete Instantiation for Quantified Formulas in Satisfiability Modulo Theories.** CAV 2009
- Reynolds, Tinelli, Goel, Krstic. **Finite Model Finding in SMT.** CAV 2013

Thank You