BRUNO KESSLER

SAT/SMT summer school 2015

Introduction to SMT

Alberto Griggio

Fondazione Bruno Kessler — Trento, Italy

Some material courtesy of Roberto Sebastiani and Leonardo de Moura

Outline

Introduction

The DPLL(T) architecture
Some relevant T-solvers
Combination of theories

Quantifiers in DPLL(T)

- D(

The SMT problem =X

® Satisfiability Modulo Theories

® Given a (quantifier-free) FOL formula and a (decidable)
combination of theories 7; U ... U 7, IS there an assignment
to the free variables -1, ..., Zx that makes the formula true?

® Example:

def

0= (r1 > 0) A (x1 < 1A
((f(z1) = f(0)) = (rd(wr(P, z2,73), x2 + 71) = w3 + 1))

The SMT problem

m Satisfiability Modulo Theories

® Given a (quantifier-free) FOL formula and a (decidable)
combination of theories 7; U ... U 7,,, IS there an assignment
to the free variables 1, ...,Z, that makes the formula true?

® Example:

def

w0 =|(x1 > 0) A (x1 < DA
((f(x1) = F(O)) = (rd(wr(P, z2, x3) x2 4 x1) = x3 + 1))

Linear Integer ///////
Arithmetic (LIA)

The SMT problem Sl e

m Satisfiability Modulo Theories

® Given a (quantifier-free) FOL formula and a (decidable)
combination of theories 7; U ... U 7,,, IS there an assignment
to the free variables 1, ...,Z, that makes the formula true?

® Example:

def

@ =|(x1 > 0) A (x1 < 1A
((f(x1) = FO))[= (rd(wr(P, 22, x3) {x2 4 x1) = x3 + 1))
/

Linear Integer %
Arithmetic (LIA)

Equality (EUF)

The SMT problem 7 FOIRATONE

m Satisfiability Modulo Theories

® Given a (quantifier-free) FOL formula and a (decidable)
combination of theories 7; U ... U 7,,, IS there an assignment
to the free variables 1, ...,Z, that makes the formula true?

® Example:

def

@ =|(x1 > 0) A (x1 < 1A
((f(z1) 7]"(0)) — (rd{wr(P, x2, z3)|[x2 + 1) = 25 + 1))

Linear Integer W
Arithmetic (LIA)

Equality (EUF) Arrays (A)

The SMT problem =X

® Satisfiability Modulo Theories

® Given a (quantifier-free) FOL formula and a (decidable)
combination of theories 7; U ... U 7, IS there an assignment
to the free variables -1, ..., Zx that makes the formula true?

® Example:

def

0= (r1 > 0) A (x1 < 1A
((f(z1) = f(0)) = (rd(wr(P, z2,73), x2 + 71) = w3 + 1))

LIA E (1 = 0)
EUF E f(z1) = f(0)
A = rd(wr(P,x2,x3),T2) = x3
Bool = rd(wr(P, z2,x3), 22 +x1) = x3 + 1
LIA E L

SMT: some history

The “early days”

B The Simplify theorem prover [Detlefs, Nelson, Saxe]

® The grandfather of SMT solvers

® Efficient decision procedures

= Equality logic + extensions (Congruence Closure)
¥ Linear arithmetic (Simplex)

® Theory combination (Nelson-Oppen method)

= Quantifiers (E-matching with triggers)

B |[nefficient boolean search

=<

SMT: some history - 2 =2

The SAT breakthrough

B |ate '90s - early 2000: major progress in SAT solvers

B CDCL paradigm: Conflict-Driven Clause-Learning DPLL
® Grasp, (z)Chaff, Berkmin, MiniSat, ...

B combine strengths of model search and proof search
In a single procedure

® Model search: efficient BCP and variable selection heuristics

® Proof search: conflict analysis, non-chronological backtracking,
clause learning

B Smart ideas + clever engineering “tricks”

SMT: some history - 3 =X

From SAT to SMT

B exploit advances in SAT solving for richer logics

® Boolean combinations of constraints over (combinations of)
background theories

® The Eager approach (a.k.a. “bit-blasting”)

® Encode an SMT formula into propositional logic

® Solve with an off-the-shelf efficient SAT solver

® Pioneered by UCLID

= Still the dominant approach for bit-vector arithmetic

SMT: some history - 4 =€

The Lazy approach and DPLL(T) (2002 - 2004)

B (non-trivial) combination of SAT (CDCL) and T-solvers

® SAT-solver enumerates models of boolean skeleton of formula
® Theory solvers check consistency in the theory

® Most popular approach (e.g. Barcelogic, CVC4, MathSAT,
SMTInterpol, Yices, Z3, VeriT, ...)

¥ Yices 1.0 (2006)

® The first efficient “general-purpose” SMT solver

m731.0(2008)
® > 1600 citations, most influential tool paper at TACAS

Outline

Introduction

The DPLL(T) architecture
Some relevant T-solvers
Combination of theories

Quantifiers in DPLL(T)

-

The lazy approach to SMT

=

B Atheory T Is a set of structures (D, /) over a signature Y_:

" D a domain for variables
® | an interpretation for function symbols I(f): D" +— D

The lazy approach to SMT REN

B Atheory T Is a set of structures (D, /) over a signature Y_:

® D a domain for variables

® | an interpretation for function symbols I(f): D" +— D

® Deciding the satisfiability of ¥ modulo 7 can be reduced
to deciding 7 -satisfiability of conjunctions (sets) of
constraints

® Can exploit efficient decision procedures for sets of constraints,
existing for many important theories

= Naive approach: convert ¢ to an equivalent ¢’ in disjunctive
normal form (DNF), and check each conjunction separately

® Main idea of lazy SMT: use an efficient SAT solver to
enumerate conjuncts without computing the DNF explicitly

A basic approach

® Offline lazy SMT

F = CNF_bool(¢)
while true:
res, M = check_SAT(F)
1f res == true:
M' = to_T(M)
res = check_T(M'")

if res == true:
return SAT
else:
F += I'M
else:

return UNSAT

A basic approach

m Offline lazy SMT

F = CNF_bool(¢ D

while true

res, @SAT(:))

if res == true:
M' = to_T(M)
res = check_T(M'")

if res == true:
return SAT
else:
F += I'M
else:

return UNSAT

Boolean

reasoning

|

D
FONDAZIONE
BRUNO KESSLER

A basic approach

m Offline lazy SMT

F = CNF_bool(¢ D

while true

res, @SAT(:))

if res == true:

else:
return UNSAT

M’ to T(M
res :écﬁeck_T(Q')

if res == true:
return SAT
else:
F += IM

Boolean
reasoning

Theory
reasoning

=<

A basic approach

m Offline lazy SMT

F = CNF_bool(¢ D

while true

= Check_ SAT(:))

else

res,
if res == true:
M' to T(M
res :éﬁﬁeck_T(ﬁ:z;E
if res == true:
return SAT
else:
CF += IMD

return UNS;;\\\\‘\\

Boolean
reasoning

Theory
reasoning

I~
Block bad solutions

=

Example
0 def Bool def
Cql - (2$Q—$3>2)\/P1 AV P,
Co _|P2 V (261 — I5 S 1) _|P2 \% AQ
C3 _I(3331 — 25132 S 3) V _IP2 _IAg V _|P2
Cyq _I(SCCl —x3 < 6) V =P —-Ay VP
Cs P1 V (3331 — 25132 S 3) P1 V Ag
Cq ($2—CE4§6)\/_IP1 A5\/_1P1
Cvr P1V(£C3:3£U5—|—4)\/—lpg Pl\/AG\/—IPQ

Example
© def SOBool def
C1 : (21’2—5173>2)\/P1 ALV P
Co . ﬁPQ V <£B1 — Iy S 1) _|P2 \% AQ
C3 . ﬁ(3%1 — 2213'2 S 3) V _|P2 _IA3 V _|P2
Cyq - _1(35131 — I3 S 6) V _IP1 _IA4 V _IP1
Cy . P1 V (3331 — 2:132 S 3) P1 V Ag
Cg - (QZQ—CE4§6)\/_IP1 A5\/_1P1
Cy . P1V(£B3:3£E5—|—4)\/—lpg Pl\/A6\/_|P2

M = {Py, Py, —Ay, Az, — A3, Ay, As, Ag}

M = {_1(25172 — I3 > 2), (CEl — x5 < 1), _1(3371 — 229 < 3),
ﬂ(Sa’;l —x3 < 6), (CL‘Q — x4 < 6), (5133 = 315 + 4)}

=

=

Example
© def SOBool def
C1 : (21’2—373>2)\/P1 ALV P
Co . ﬁPQ V <£B1 — Iy S 1) _‘P2 \% AQ
C3 . ﬁ(3561 — 2213'2 S 3) V _|P2 _IA3 V _|P2
Cq4 . _1(35131 — X3 S 6) V _IP1 _IA4 V _IP1
Cy . P1 V (3331 — 2:132 S 3) P1 V Ag
Cg - (QZQ—CE4§6)\/_IP1 A5\/_IP1
Cy . P1V(£B3:3£E5—|—4)\/—lpg Pl\/AG\/_'PQ

M = {Py, Py, —Ay, Az, — A3, Ay, As, Ag}

M/ = {_1(25172 — I3 > 2), (ZEl — Iy S 1), _1(3371 — 2582 S 3),

ﬂ(le —x3 < 6), (CL‘Q — x4 < 6), (.263 = 315 + 4)}
T~
_'(3.771 — 3%5 — 4 < 6) —> _I(CCl — Iy < 10/3) —> (331 — Ty > 10/3)

UNSAT - add - M and continue

DPLL(T) e

® Online approach to lazy SMT

® Tight integration between a CDCL-like SAT solver (“DPLL")
and the decision procedure for T (“T-solver”), based on:

® T-driven backjumping and learning

® Early pruning

® T-solver incrementality

® T-propagation

® Filtering of assignments to check

® Creation of new T-atoms and T-lemmas “on-demand”

T-backjumping and T-learning B

® \When unsat, T-solver can produce reason for inconsistency

® T-conflict set: inconsistent subset of the input constraints

B T-conflict clause given as input to the CDCL conflict analysis

® Drives non-chronological backtracking (backjumping)
® Can be learned by the SAT solver

B The less redundant the T-conflict set, the more search is
saved

® |deally, should be minimal (irredundant)

B Removing any element makes the set consistent
= But for some theories might be expensive to achieve

B Trade-off between size and cost

Example

0 def SOBool def

Cql - (21’2—1’3>2)\/P1 ALV P

Co . _|P2 V (581 — X5 S 1) _IPQ V AQ

C3 . _I(3$1 — 2562 S 3) V _IP2 _IA3 V _|P2

Cq - _1(3371 —x3 < 6) V =P A,V P

cs: PV (35131 — 219 < 3) P Vv Aj

Ce - (5132—334§6>\/_IP1 A5\/_IP1 —

C7r . P1 V (333 = 3335 -+ 4) V —|P2 P1 V A6 V _'P2 .P1(05)
.A§C2)
A

M = [ﬁA47A67A57A17P27ﬂA37P17A2]
M' = {=(3z7 — 23 <6), (3 = 3w5 +4), (2 — 14 < 6),
=229 —x3 > 2),7(3x1 — 225 < 3), (1 — x5 < 1)}

Example

o = ®
C1 - (2$Q—$3>2)\/P1

co: PV (ry—x5<1)

C3 . _I(3$1 — 2£E2 S 3) V _|P2
cy: —(3x1—23<6)V-P

Cy . P1 \Y (35131 — 2562 S 3)

Ce - ($2—$4§6>\/_IP1

Cr . P1V(333:3£E5—|—4)\/—lpg

Bool

def

AV Py
—-PoV Ao

—A3 VP,

- Ay VP

P Vv Aj

As VP
PV Ag VvV —FPs

M = [ﬁA47A67A57 A17P27 ﬂAB) PlaAZ]

M/:Eﬁ(gibl—wg SG),($3:3$5—|—4),(— <

ﬁ(QLEQ — Xy > Z)y 209 < 3){(1‘1 — x5 < 1)

T-conflict set

)

Example

def Bool

¥ = ¥
C1 - (2$Q—$3>2)\/P1

co: PV (ry—x5<1)

C3 . _I(3$1 — 2£E2 S 3) V _|P2
cy: —(3x1—23<6)V-P

Cy . P1 \Y (35131 — 2562 S 3)

Ce - (332—334§6>\/_IP1

Cr . P1V(333:3ZC5—|—4)\/—lP2

Conflict analysis:

T'-conflict clause

C2

def

ALV P
PV Ay

—A3 VP,

- Ay VP
PV As

As vV P
PV Ag VP

ALV —AgV —Ay SPyV Ay

Ay V —Ag V Py

Example

0 def SpBool def

Cql - (2$2—$3>2)\/P1 ALV P

Co . _|P2 V (561 — Iy S 1) _IPQ V AQ
C3 . _I(3$1 — 2£E2 S 3) V _IP2 _IA3 V _|P2
Cq - _l(gilﬁl —x3 < 6) V =P A,V P
Cy . P1 V (3331 — 25132 S 3) P1 V A3

Ce - ($2—I4§6>\/_IP1 A5\/_IP1

Cr . P1V(333:3£C5—|—4)\/—lP2 P1VA6V—IP2

Csg . A4 \/_IA6 \/_IPQ

Conflict analysis:

T'-conflict clause

ALV —Ag V Ay

C2

P,V Ay

Ay V —Ag V Py

Early pruning REN

B [nvoke T-solver on intermediate assignments, during the
CDCL search

" |f unsat is returned, can backtrack immediately
B Advantage: can drastically prune the search tree

® Drawback: possibly many useless (expensive) T-solver calls

® T-solver calls

b

SAT WITHOUT EARLY-PRUNING
WITH EARLY-PRUNING

SAT

SAT

UNSAT

Early pruning e

® Different strategies to call T-solver

® Eagerly, every time a new atom is assigned
u After every round of BCP
= Heuristically, based on some statistics (e.g. effectivenes, ...)

® No need of a conclusive answer during early pruning calls

® Can apply approximate checks
¥ Trade effectiveness for efficiency

= Example: on linear integer arithmetic, solve only the real
relaxation during early pruning calls

Example

o = ®
C1 - (2$Q—$3>2)\/P1

co: PV (ry—x5<1)

C3 . _I(3$1 — 2£E2 S 3) V _|P2
cy: —(3x1—23<6)V-P

Cy . P1 \Y (35131 — 2562 S 3)

Ce - (332—334§6>\/_IP1

Cr . P1V(333:3ZC5—|—4)\/—lP2

Bool

def

ALV P
PV Ay

—Ag VP,
Ay V Py

P Vv As

As V P
PV Ag VP,

=

Example

o = ®
C1 - (2$Q—$3>2)\/P1

co: PV (ry—x5<1)

C3 . _I(3$1 — 2£E2 S 3) V _|P2
cy: —(3x1—23<6)V-P

Cy . P1 \Y (35131 — 2562 S 3)

Ce - (332—334§6>\/_IP1

Cr . P1V(333:3ZC5—|—4)\/—lP2

M = [P27A2]

Bool

def

ALV P
PV Ay

—Ag VP,
Ay V Py

P Vv As

As V P
PV Ag VP,

SAT

Example

o = ®
C1 - (2$Q—$3>2)\/P1

co: PV (ry—x5<1)

C3 . _I(3$1 — 2£E2 S 3) V _|P2
cy: —(3x1—23<6)V-P

Cy . P1 \Y (35131 — 2562 S 3)

Ce - (332—334§6>\/_IP1

Cr . P1V(333:3ZC5—|—4)\/—lP2

M = [PQ,AQ,AG]

Bool

def

ALV P
PV Ay

—Ag VP,
Ay V Py

P Vv As

As V P
PV Ag VP,

SAT

Example
’ def SDBOOI def Pf/
Cql - (2$Q—$3>2)\/P1 ALV P
Co . _|P2 V (561 — Iy S 1) _‘P2 V AQ A
C3 . _I(3$1 — 2£E2 S 3) \V4 _|P2 _IA3 V _|P2 A6
Cq - _l(3£l?1 —x3 < 6) V P Ay VP _A,
cs: PV (35131 — 219 < 3) P Vv As R
Ce - (332—334§6>\/_IP1 A5\/_|P1
C7 . P1V(333:3ZC5—|—4)\/—lP2 Pl\/A6\/_'P2
M = [Py, Ag, Ag, —A4] UNSAT

T-conflict = {—(3z1 — 23 < 6), (v3 = 3w5 +4), (x1 — x5 < 1)}

T-solver incrementality =3¢

® With early pruning, T-solvers invoked very frequently on
similar problems

® Stack of constraints (the assignment stack of CDCL)
Incrementally updated

B Incrementality: when a new constraint is added, no need to
redo all the computation “from scratch”

B Backtrackability: support cheap (stack-based) removal of
constraints without “resetting” the internal state

B Crucial for efficiency

= Distinguishing feature for effective integration in DPLL(T)

T-propagation

=

B T-solvers might support deduction of unassigned constraints

® |f early pruning check on M returns sat, T-solver might also return

a set D of unsassigned atoms such that M

— [foralll € D

B T-propagation: add each such / to the CDCL stack

= As if BCP was applied to the (T-valid) clause =M V[(T-reason)
= But do not compute the T-reason clause explicitly yet

B | azy explanation: compute T-reason clause only if needed

during conflict analysis

® ke T-conflicts, the less redundant the better

Example

© def SDBOOI def —Ay
Ccq1 - (2332 — I3 > 2) V Py AV Py —A;

C9 _|P2 V (5131 — X5 S 1) _‘P2 V AQ

C3 _1(3331 — 2332 S 3) V _'P2 —IA3 V _|P2 Pl(q)
Cyq ﬁ(3%1 —x3 < 6) V =P Ay VP Ag%)
Cs Pl\/(3$1 —2372 SS) Pl\/Ag Ag

Cq (.’L’Q — T4 S 6) V _IP1 A5 V _IP1

Cr Pl\/(ZEg :3335—|—4)\/_1P2 P1VA6\/—IP2

Cs PQ V (2562 — 3181 Z 5)\/ P2 V A7 \Y Ag

(5133 + I5 —4561 Z 0)
M = [_'A47_'A17P17A57A6]

Example

© def SDBOOI def —A,
Ccq1 - (2332 — I3 > 2) V Py AV Py —A;

C9 _|P2 V (5131 — X5 S 1) _‘P2 V AQ

C3 _1(3331 — 2332 S 3) V _'P2 —IA3 V _|P2 Pl(q)
Cyq ﬁ(3%1 —x3 < 6) V =P Ay VP Aé%)
Cs PV (3$1 — 219 < 3) Py Vv As Ag

Cq (.’L’Q — X4 S 6) V _IP1 A5 V _IP1

¢ PV (23 =315 +4) VP PV Ag V —Ps o -4
C8 PQ V (2562 — 3181 > 5) P2 V A7 V Ag

5133—|—£L‘5—4£U1>0

M = “A17P17A57‘\

35131 — X3 < 6)

(333 = 3£E5 + 4)

—(3z1 — 35 < 10)

—|(x1 — X5 S 1) — _|A2

Example

© def SDBOOI def —Ay

Ccq1 - (2332 — I3 > 2) V Py AV Py —A;

C9 _|P2 V (5131 — X5 S 1) _‘P2 V AQ)

C3 _1(3331 — 2332 S 3) V _'P2 —IA3 V _|P2 Pl(c1

Cyq ﬁ(3%1 —x3 < 6) V =P Ay VP Ag%)

Cs PV (3%1 — 219 < 3) PV Aj Ag

Cq (.’L’Q — X4 S 6) V _IP1 A5 V _IP1

cr: PV (13 =3xs5 +4)V P PV Ag V —Ps ® - A"

Cs PQ \Y (2562 — 3181 Z 5)\/ P2 V A7 V Ag ° —|P(62)

($3+x5—4$120) 2

M = [_'A47 _'Ala P17 A57 A67 _'A27 _'PQ]

Example

© def SDBOOI def —Ay

Ccq1 - (2332—273 > 2)\/P1 AV Py —A;

C9 _|P2 V (5131 — X5 S 1) _IPQ V AQ)

C3 _1(3331 — 2332 S 3) V _'P2 —IA3 V ﬁPQ Pl(c1

Cqy ﬁ(3%1 — I3 S 6) V ﬁP1 _IA4 V _IP1 Ag%)

Cs Pl \% (3$1 — 2332 S 3) P1 V Ag A6

Cq (.’,13'2 — X4 S 6) V _IP1 A5 V _IP1

cr: PV (13 =3xs5 +4)V P PV Ag V Py ® - A"

Cs P2 \Y (2562 — 3181 Z 5)\/ PQ V A7 V Ag ° —|P(62)

(5133—1—5135—433120) 2

M = [_'A47 _'Ala P17 A57 A67 _'A27 _'PQ]

Example
0 def SDBOOI def - Ay
Ccq1 - (2332—273 > 2)\/P1 AV Py —A;
C9 _|P2 V (5131 — X5 S 1) _IPQ V AQ
c3: (w1 — 225 < 3)V P, — Az V P P
Cqy ﬁ(3%1 — I3 S 6) V ﬁP1 _IA4 V _IP1 Ag%)
Cs Pl V (3$1 — 2332 S 3) P1 V Ag Ag
cg: (ro—x4 <6)V P As V =Py
i PV (23 = 35 4+ 4) V =P Py V Ag V —P o -y
Cs8 P2 V (2562 — 3x1 > 5)\/ P2 V A? V A8 —.P(CZ)
($3+£I}5—4£U1>0) Q/' ’
As
A17P17A57A67_'P @ x
(3331 — 5133 < 6

($1—Qf5<1

—|(—x3 + 3335 < 3)

(.CUg + I —4561 > O)

L

Examp le RS
© def SOBool def

C1 - (2332—5133>2)\/P1 ALV P

C9 _|P2 V (wl — Iy S 1) _IPQ V A2

C3 _1(3331 — 25(32 S 3) V _'P2 ﬁ143 V _|P2

C4 ﬁ(35131 — I3 S 6) V ﬁPl _IA4 V _IP1

Cs Pl\/(gflfl —2$2 SB) Pl\/Ag

Cq (CBQ — T4 S 6) V —|P1 A5 V _IP1

Cr P1V(5133:3$5—|—4)\/_IP2 P v Ag VP,

C8 P2 V (2$2 — 35131 > 5)\/ PQ V A7 V Ag

(CBg + T5 —433'1 > O)

M = [As A Pry A5, Aoy 2 Az, ~Poy As]

(3331 —5133 < 6

(5131—5135<1

—I(—£U3 + 35135 < 3)

(23 + x5 — 421 > 0)

L

Conflict analysis -
compute

T-reason for —A,

Example
’ def SDBool def Ay
Ccq1 - (2332—273 > 2)\/P1 AV Py —A;
C9 _|P2 V (5131 — X5 S 1) _IPQ V AQ
c3: —(3x1 — 229 < 3)V P —Az VP, P
Cqy ﬁ(3%1 — I3 S 6) V ﬁP1 _IA4 V _IP1 Ag%)
Cs Pl V (3$1 — 2332 S 3) P1 V Ag Ag
Cq (.’,13'2 — T4 S 6) V _IP1 A5 V _IP1
i PV (23 = 35 4+ 4) V =P Py V Ag V —P o -y
Cs8 P2 V (2562 — 3x1 > 5)\/ P2 V A? V A8 —.P(CZ)
(5133—1—5135—433120) Q/' ’
Az
M = [nAs APy, A5, dg Mg, ~Pr(Ar)) - X
/
_1(3331 — I3 < 6)

—1(2262 — I3 > 2)

_l(3181 — 2:82 S 4)

(2%2 — 3z > 5)

L

Examp le RS
© def SOBool def

Ccq1 - (2332—5133>2)\/P1 AV Py

C9 _|P2 V (wl — Iy S 1) _IPQ V A2

C3 _1(3331 — 25(32 S 3) V _'P2 ﬁ143 V _'P2

C4 ﬁ(35131 — I3 S 6) V ﬁPl _IA4 V _IP1

Cs Pl\/(gflfl —233‘2 SB) Pl\/Ag

Cq (CBQ — T4 S 6) V —|P1 A5 V _IP1

Cr P1V(5133:3£I?5—|—4)\/_IP2 P v Ag VP,

C8 P2 V (2$2 — 35131 > 5)\/ PQ V A7 V Ag

(5133 —|—£IZ5 —4331 Z O)

M = Ay, P s, A, 4, P
/

—|(2;132 — X3 > 2)

—|(3le — I3 < 6)

_'(3561 — 2[62 S 4)

(2332 — 333‘1 Z 5)

L

— A5 not involved in
conflict analysis —

no need to compute
T-reason

Filtering of assignments

14

B Remove unnecessary literals from current assignment M

" Irrelevant literals: [s.t. M \ {l}

— o (arbitary, not CNF)

" Ghost literals: [occurs only in clauses satisfied by M \ {l}

® Pure literals: =] € M and [occurs only positively in ¢

® Note: this is not the pure-literal rule of SAT!

® Pros:

® reduce effort for T-solver

¥ increases the chances of finding a solution

® Cons:

" may weaken the effect of early pruning (esp. with T-propagation)

® may Iintroduce overhead in SAT search

B Typically used for expensive theories

Example
’ def SDBool def Ay
Ccq1 - (2332—273 > 2)\/P1 AV Py —A;
C9 _|P2 V (5131 — X5 S 1) _IPQ V AQ
c3: —(3x1 — 229 < 3)V P —Az VP, P
Cqy ﬁ(3%1 — I3 S 6) V ﬁP1 _IA4 V _IP1 Ag%)
Cs Pl V (3$1 — 2332 S 3) P1 V Ag Ag
Cq (.’,13'2 — T4 S 6) V _IP1 A5 V _IP1
i PV (23 = 35 4+ 4) V =P Py V Ag V —P o -y
Cs8 P2 V (2562 — 3x1 > 5)\/ P2 V A? V A8 —.P(CZ)
(5133—1—5135—433120) Q/' ’
Az
M = [nAs APy, A5, dg Mg, ~Pr(Ar)) - X
/
_1(3331 — I3 < 6)

—1(2262 — I3 > 2)

_l(3181 — 2:82 S 4)

(2%2 — 3z > 5)

L

Exam P le

0 def Bool def —Ay

c1: (2o —x3>2)V P —Aq

C9 _|P2\/ Qfl —I75 V Ao

C3 3:131 — 2x ﬁ143 V ﬁPQ Pl(q)

Cyq 35131 — I3 Ay VP Ag%)

Cs Pl V 35131 209 < 3 PV Ag Ag

Cq $2—£E4<6 \/—|P1 A5\/_IP1

cr: PV (23 =335 +4)V P Py V Ag V —P o -4y

C8 P2 (2$2 — 32131 =)\/ PQ V A7 V Ag P(Cz)

2133—1—2135—4331>0 Q/'_|2
Az

P17A57A67_'A27_'P @ x

3331—333<6) 25132—333>2

_'(3561 — 2262 S 4)

(2332 — 333‘1 Z 5)

L

Example

o def QDBOOI def Ay
C1 : (25132 — I3 > 2) V P AV Py —Aq

Co _|P2 V (5131 — Iy S 1) _IPQ V AQ

C3 —I(3Q71 — 2562 S 3) V _|P2 _IA3 V ﬁPQ Pl(q)
Cq ﬁ(SCL'l —x3 < 6) V P - Ay V Py Ag%)
Cs P1 V (3331 — 2[132 S 3) P1 V Ag Ag

Cg (£U2—334§6)\/_IP1 A5\/_IP1

C7 P1V(CE3:3£E5—|—4)\/_IP2 P1VA6\/—IP2

Cs P2 V (2582 — 3[171 Z 5)\/ PQ V A7 V Ag

(23 + x5 — 421 > 0)

M p— I:_|144:7

SAT

7P17A57A67 _'A27 _'P27A7]

T-atoms and T-lemmas on demand BN

B Some T-solvers might need to perform internal case splits to
decide satisfiability

= Example: linear integer arithmetic
(x =3y <0),(y—22x<0),(z+3y <3) —

case (y < 0) — L
case (y > 1) — L

® Splitting on-demand: use the SAT solver for case splits

® Encode splits as T-valid clauses (7-lemmas) with fresh T-atoms
® Generated on-the-fly during search, when needed
® Benefits: reuse the efficient SAT search

B simplify the implementation

B exploit advanced search-space exploration techniques
(backjumping, learning, restarts, ...)

= Potential drawback: “pollute” the SAT search

T-atoms and T-lemmas on demand BN

B T-solver can now return unknown also for complete checks

® |n this case, it must also produce one or more T-lemmas
® SAT solver learns the lemmas and continues searching
= eventually, T-solver can decide sat/unsat

B Termination issues

® |f SAT solver drops lemmas, might get into an infinite loop

® similar to the Boolean case (and the “basic” SMT case), similar
solution (e.g. monotonically increase # of kept lemmas)

= T-solver can generate an infinite number of new T-atoms!

B [For several theories (e.g. linear integer arithmetic, arrays)
enough to draw new T-atoms from a finite set
(dependent on the input problem)

T-solver interface example

14

+i

class TheorySolver {

bool tell_atom(Var boolatom, Expr tatom);

vold new_decision_level();
void backtrack(int level);

void assume(Lit 1);
1bool check(bool approx);

void get_conflict(LitList &out);

Lit get_next_implied();
bool get_explanation(Lit implied, LitList &out);

bool get_lemma(LitList &out);

Expr get_value(Expr term);

DPLL(T) example

14

def DPLL-T():
while True:

conflict = False

1f unit_propagation():
res = T.check('!all_assigned())
if res == False: conflict = True
elif res == True: conflict = theory_propagation()
elif learn_T_lemmas(): continue
elif 'all_assigned(): decide()

else:
build_model()
return SAT

else: conflict = True
1f conflict:
1lvl, cls = conflict_analysis()
1f 1vl < O: return UNSAT
else:
backtrack(lvl)
learn(cls)

14

DPLL(T) example

def DPLL-T():
while True:

call T.assume(1lit)

conflict = False
if unit_propagation() — ..
|
res = T.check(!all_assigned())
i1f res == False: conflict = True 4/
elif res == True: conflict = |theory_propagation()
elif |learn_T_lemmas()} “Tomrtthee—
elif 'all assigned(): [decide() call T.get_lemma()
else:
build_model() — call T.new_decision_level()
return SAT \\\ T.assume(lit)

else: conflict
if conflict:

= True EEIRICEIAZINEIC))

1vl, cls =

conflict_analysis()

if 1lvl < 0O:
else:

return UNSAT O call T.get_conflict(c)
T.get_explanation(l, e)

backtrac

k(lvl)

learn(cl

call T.backtrack(1lvl)

s)

Outline

Introduction

The DPLL(T) architecture
Some relevant T-solvers
Combination of theories

Quantifiers in DPLL(T)

-

Equality (EUF) REN

® Polynomial time O log n) congruence closure procedure

® Fully incremental and backtrackable (stack-based)

B Supports efficient T-propagation

= Exhaustive for positive equalities
® |[ncomplete for disequalities

B | azy explanations and conflict generation

B Typically used as a “core” T-solver

B Supports efficient extensions, e.g.

¥ |nteger offsets
® Bit-vector slicing and concatenation

N -

Example

(f(z,y) =)}

-------- f(f(z,y),v)
/ -
;/ h(y) // g(z)

?%J

REN

Example

2)\(h(y) = g(@) (F(f(2,9),9) = 2), ~(9(x) = g(2))]

(f(z,y)

""f(f(xay)vy)

REN

Example

), (W(y) = g@),[(f(f(2,9),9) = 2)} ~(9(x) = g(2))]

(f(z,y)

""f(f(xay)7y)

)
=== f(f(xay)ay \
ot 4 B
, // / ?:c)
’)/ h(y |
fx,y

-.~
- o

-

-

--
="
' d

L 2

--
="
' d

~(g(z) = 9(2))

----f(f(il?, y)v y)
ﬁ \'N """" .
h(y) g(x) g9(2)
x/
y ¥

--
="
' d

get_conflict():

~(g(z) = 9(2))

"'"f(f(x?y)vy)\
—
h(y g(x) g9(2)
x/
4

--
="
' d

~(g(z) = 9(2))

"'"f(f(x?y)vy)
g
h(y) g(x) g9(2)
x/
y

--
="
' d

get_conflict():
~(g(z) = 9(2))
(f(f(z,y),y) = 2)

""f(f(x7y)7y)
g
h(y) g(x) g9(2)
x/
y

get_conflict():
~(g(z) = 9(2))
(f(f(z,y),y) = 2)

f(f(z,y),v) \
—~-""[T .
g(x) g9(2)
x/
y ¥

--
="
' d

L 2

get_conflict():
~(g(z) = 9(2))
(f(f(z,y),y) = 2)

--
="
' d

L 2

get_conflict():
~(g(z) = 9(2))
(f(f(z,y),y) = 2)

(f(z,y) = z)

--
="
' d

L 2

get_conflict():
~(g(z) = 9(2))
(f(f(z,y),y) = 2)

(f(z,y) = =)

Linear Rational Arithmetic (LRA) =€

®m Constraints of the form), @iz; < C

® Variant of simplex specifically designed for DPLL(T)

= Very efficient backtracking

® |ncremental checks

® Cheap deduction of unsassigned literals

= Minimal explanations generation

® Can handle efficiently also strict inequalities

" Rewrite (¢t < 0) to (¢ + ¢ < 0), treat € symbolically

® Worst-case exponential (although LRA is polynomial),
but fast in practice

Simplex for DPLL(T) BEN

Preprocessing:) apTp < U+ Tglack = D GpTH A Tglack < U
Tableau of equations (fixed) + bounds (added/removed)

Candidate solution 5 always consistent with the tableau

xslack 1 - =00 xslack 1 U)i
xslack2 - lZ xslackZ +-00

=la;1°1 + a;2x2 + ...+ QGimTm [1~ |x .|~ |u

slack i l slack i l

slack n n xslack n n

Preprocessing: Z anTn < U > Lolack = Z anlh N\ Talack < U
Tableau of equations (fixed) + bounds (added/removed)

Candidate solution 5 always consistent with the tableau

x = Pivoting steps to make o0 X y

j . slack / 1

_ (3 satisfy the bounds]

X glack 2 2 X lack 2 +00
/ / I S . S .

xslack i E : a’ij Lslack j + § A; 1. Lslack k i xslack ; ul-
i a’ . >0 a’, <0 . X .

xh - ln xslackn un

Simplex for DPLL(T) RN

Preprocessing: Z aRTly < U Tglack = Z anlh N\ Talack < U
Tableau of equations (fixed) + bounds (added/removed)

Candidate solution § always consistent with the tableau

ﬁ(mslack z) < lz

and for the others 3 can ee X Jack 1 u,
= ict!
not change = conflict! [X +00
/ / . . S u
Xlack i E ;5 Lslack j + § ;1. Lslack k li > X lack i i
i a’ . >0 a’, <0 . i
xh — ln xslackn un

Simplex for DPLL(T)

|

- D(
FONDAZIONE
BRUNO KESSLER

Preprocessing: Z aAnTn < U > Lolack = Z apTh N\ Tslack < U

Tableau of equations (fixed) + bounds (added/removed)

Candidate solution 5 always consistent with the tableau

5(xslack z) < lz
and for the others 3 can
not change = conflict!

/ /
xslacki E : a’iijIaij + E A; 1. Lslack k

a’, . >0 a’, <0

get_conflict():

{Q_ anzn < u)}y

fOI’ ajs]ack] U

{O_anzy > 1)}k

for Lslack k U

{Q_anzn 2 1)}

for Lslack i

Linear Integer Arithmetic (LIA) =2

B NP-complete problem

B Popular approach: simplex + branch and bound

= Approximate checks solve only over the rationals
® |n complete checks, force integrality of variables by adding either:

® Branch and bound lemmas (z < |c¢|) V (z > |c¢])
® Cutting plane lemmas

¥ |nequalities entailed by the current constraints,
excluding only non-integer solutions

® Gomory cuts commonly used
B Using splitting on-demand

® Might also include other specialized sub-solvers for tractable
fragments

B E g. specialized equational reasoning

Arrays (A) REN

® Read (rd) and write (wr) operations over arrays
B Equality over array variables (extensionality)
m Example: wr(a,,x) = wr(b,i,rd(a, j,y)) A =(a =b)

B Common approach: reduction to EUF via lazy axiom
Instantiation
= read-over-write: Va.ViNVz.(rd(wr(a,t,x),i) =)

Va.ViNjNVz.((1 # j) — rd(wr(a,i,2),7) = rd(a, 7))
= extensionality: Va.Vb.((a # b) — Fi.(rd(a, i) # rd(b, 1))

= Add lemmas on-demand by instantiating the quantified variables
with terms occurring in the input formula

B Using smart “frugal” strategies: check candidate solution,
Instantiate only (potentially) violated axioms

Example X

—(j = k), ~(rd(wr(a,i,x),7) = rd(a, 7)), ~(rd(wr(a,i,x), k) = rd(a, k))

EUF solution (equivalence classes):

{a,wr(a,z,x))}, {rd(wr(a,z,x),5)}, {rd(wr(a,i,x),k)},
{z,0,7},{k}, {rd(a,7)}, {rd(a, k)}

Example e

—(j = k), ~(rd(wr(a,i,x),7) = rd(a, 7)), ~(rd(wr(a,i,x), k) = rd(a, k))

EUF solution (equivalence classes):

{a,wr(a,z,x))}, {rd(wr(a,i,x),75)}, {rd(wr(a, i, T), k)},
{4, 5}, {k}, {rd(a, 1)}, {rd(a, k)}

Add violated lemma: (i # k) — (rd(wr(a,?,x),k) = rd(a, k))

Example e

—(j = k), ~(rd(wr(a,i,x),7) = rd(a, 7)), ~(rd(wr(a,i,x), k) = rd(a, k))

EUF solution (equivalence classes):

{a,wr(a,i,z))}, {rd(wr(a,i,x),7)}, {rd(wr(a,i,), k)},
{z,0,7},{k}, {rd(a,7)}, {rd(a, k)}

Add violated lemma: (i # k) — (rd(wr(a,?,x),k) = rd(a, k))

EUF solution (equivalence classes):

{a,wr(a,i,x))}, {rd(wr(a,i,x),7)}, {rd(wr(a,i,x), k)},
{w, 7} A k) {rd(a,)}, {rd(a, k) }

Example X

—(j = k), ~(rd(wr(a,i,x),7) = rd(a, 7)), ~(rd(wr(a,i,x), k) = rd(a, k))

EUF solution (equivalence classes):

{a,wr(a,i,z))}, {rd(wr(a,i,x),7)}, {rd(wr(a,i,), k)},
{z,0,7},{k}, {rd(a,7)}, {rd(a, k)}

Add violated lemma: (i # k) — (rd(wr(a,?,x),k) = rd(a, k))
EUF solution (equivalence classes):

{a,wr(a,i,2))}, {rd(wr(a,i,z), j)}, {rd(wr(a,i,z), k)},

(o} ik}, {rd(a,)} {rd(a, k)}

Add violated lemma: (i # j) — (rd(wr(a,i,x),j) = rd(a, j))

Example BEN

—(j = k), ~(rd(wr(a,i,x),7) = rd(a, 7)), ~(rd(wr(a,i,x), k) = rd(a, k))

EUF solution (equivalence classes):

{a,wr(a,i,z))}, {rd(wr(a,i,x),7)}, {rd(wr(a,i,), k)},
{z,0,7},{k}, {rd(a,7)}, {rd(a, k)}

Add violated lemma: (i # k) — (rd(wr(a,?,x),k) = rd(a, k))

EUF solution (equivalence classes):

{a,wr(a,i,x))}, {rd(wr(a,i,x),7)}, {rd(wr(a,i,x), k)},
{w, 71 Ak} {rd(a,)}, {rd(a, k) }

Add violated lemma: (i # j) — (rd(wr(a,i,x),j) = rd(a, j))

EUF solver returns UNSAT

Bit-vectors (BV) REN

B Most solvers use an eager approach for BV, not DPLL(T)

® Heavy preprocessing based on rewriting rules + bit-blasting

® Example: (x[l] 7 0[1]) A (9[31] ‘- 513[1]%2[32] = 0[32]) —>
(513[1] = 1[1]) A (y[gl] 50 xm%2[32] — 0[32]) —
(?J[Sl] .. 1[1]%2[32] = 0[32]) —

B Alternative: lazy bit-blasting, compatible with DPLL(T)

® Use a second SAT solver as T-solver for BV

B bit-blast only BV-atoms, not the whole formula
® Boolean skeleton of the formula handled by the main SAT solver

® Easier integration with other theories and functionalities based on
a DPLL(T) architecture

® Can integrate additional specialized sub-solvers
B Eager still better performance-wise

Lazy bit-blasting: implementation =2

® For each BV-atom « occurring in the input formula, create a
fresh Boolean “label” variable [, , and bit-blast to SAT-BV
the formula (I, <+ «)

B Exploit SAT solving under assumptions

® When the main solver generates the BV-assignment o1 . . . oy,
" Invoke SAT-BV with the assumptions [, ... [,
" |f unsat, generate an unsat core of the assumptions [, . . . Z@j

® From its negation, generate a BV-lemma —a; V ...V —q;
and send it to the main solver as a blocking clause, like in
standard DPLL(T)

Outline

Introduction

The DPLL(T) architecture
Some relevant T-solvers
Combination of theories

Quantifiers in DPLL(T)

-

Combination of theories pEA

B Very often in practice more than one theory Is needed

B Example (from intro):
def

0= (x1 > 0)A (1 < A
((f(z1) = f(0)) = (rd(wr(P, z2,x3), x2 + x1) = 23 + 1))

m How to build solvers for SMT(T, ... T) that are both
efficient and modular?

= Can we reuse T -solvers and combine them?

® Under what conditions?
= How do we go from DPLL(T) to DPLL(T, ... T)?

The Nelson-Oppen method =€

= A general technique for combining T -solvers
B Requires:

= T's to have disjoint signatures, I.e. no symbols in common
(other than =)

= T's to be stably-infinite, I.e. every quantifier-free T -satisfiable
formula is satisfiable in an infinite model of T

B Examples: EUF, LIA, LRA, A
B Counterexample: BV

B (Extensions exist to deal with some non-stably-infinite theories)

The Nelson-Oppen method

How it works (for 17 U 15)
B Preprocessing purification step on the input formula ¢

= Pure formula: no atom containing symbols of different T''s
(except =)
= By labeling subterms

B Example: A—

b o = flz+3y)+4 <
—~ = —

(f(ll) —|—4 Slg) N\ (ll p— LE—|—3y) A\ (lg

The Nelson-Oppen method

How it works (for 17 U 15)
B Preprocessing purification step on the input formula ¢

= Pure formula: no atom containing symbols of different T''s
(except =)
= By labeling subterms

m Example: | B
— 0 = f(z+3y)+4 < g(w)
(f(ll) +4 Slz) A (ll = QZ—I—Sy) A (l2 —

(Is+4 <l2) A (lh = 2+3y) A (l2 = g(w)) A (f(l1) = I3)

m T -solvers cooperate by exchanging (disjunctions of)
entailed interface equalities

® |.e., equalities between shared variables

The Nelson-Oppen method

How it works (for 17 U 15)

B Preprocessing purification step on the input formula ¢

= Pure formula: no atom containing symbols of different T''s

(except =)

= By labeling subterms

14

[3

B Example:

——
(f(l1) +4 < l2) A

(+ 1<) A

l3

l1

l

def /_/\
o= flr+3y)+4<g

::r;—l—?)y)/\@

(ll — a:—l—Sy)

= g(w)) A

A (i

2

900) -

(l2 = g(w)) =

) =

[3

)

m T -solvers cooperate by exchanging (disjunctions of)\
entailed interface equalities

® |.e., equalities between shared variables

Interface variables

Exam P le | oA
LIA (212 0), (21 < 1), (22 > 26) =(f(z1) = f(x2)), EUF
(2 < w6 +1), (x5 =24 — 1) —(f(w2) = f(z4)),
(23 =0), (x4 = 1) (f(xs) = z5), (f(x1) = z6)

Example

LIA (CEl 2 O)) (:El S 1)7 (152 > 'CCG)
(29 <xg+ 1), (x5 =124 — 1)
(5[2‘3 — 0)7 (334 — 1)

NNNNNNNNNN
BRUNO KESSLER

Example TVl aie
LIA (212 0), (z1 < 1), (2 >) ~(f(x1) = f(x2)), EUF
(12 < w6 + 1), (5 =24 — 1) (f(r2) = f(24)),

(3 =0), (x4 = 1) (f(w3) = x5), (f(z1) = w6)

Example TVl aie
LIA (212 0), (z1 < 1), (2 >) ~(f(x1) = f(x2)), EUF
(12 < w6 + 1), (5 =24 — 1) (f(r2) = f(24)),

(3 =0), (x4 = 1) (f(w3) = x5), (f(z1) = w6)

Example TVl aie
LIA (212 0), (z1 < 1), (2 >) ~(f(x1) = f(x2)), EUF
(12 < w6 + 1), (5 =24 — 1) (f(r2) = f(24)),

(3 =0), (x4 = 1) (f(w3) = x5), (f(z1) = w6)

(21 = x3) (1 = 4)
— No more v
(335 — :136) <ﬁj (;,;5 — 336) deductions possible

DPLL(T) for combined theories X

B Traditional approach: SAT solver
a single combined

Nelson-Oppen T-solver Assignmenwﬂ U T -lemma
m T-solvers exchange

(disjunctions of) implied

T1UT;

interface equalities <)
internally LA Dcduce = — v K

B |nterface equalities
Invisible to the SAT solver

m Drawbacks: Ti-solvers need to:

® pbe deduction complete for interface equalities
B pbe able to perform case splits internally

Delayed Theory Combination e

B Alternative to traditional approach
m Each T-solver interacts directly and only with the SAT solver

® SAT solver takes care of (all or part of) the combination

B Augment the Boolean search space with the possible
interface equalities (z: = y;)

B Advantages:

® No need of complete
deduction of interface
equalities

T1-lemma T>-lemma

B Case analysis via
splitting on-demand

Assignment
pU{z; = y;}

Delayed theory combination in practice REN

B Model-based heuristic:

= [nitially, no interface equalities generated

® When a solution is found, check against all the possible interface
equalities

m If T, and T, agree on the implied equalities, return SAT

m Otherwise, branch on equalities implied by T ,-model
but not by T_-model

® Optimistic approach, similar to axiom instantiation

m Still allow T -solvers to exchange equalities internally

B But no requirement of completeness

= Avoids “polluting” the SAT space with equality deductions leading
to conflicts

Exam P le | oA
LIA (212 0), (21 < 1), (22 > 26) =(f(z1) = f(x2)), EUF
(2 < w6 +1), (x5 =24 — 1) —(f(w2) = f(z4)),
(23 =0), (x4 = 1) (f(xs) = z5), (f(x1) = z6)

Example

LIA (71 > 0), (21 < 1), (w2 > 6)
(2132 S g + 1), (335 = T4 — 1)
(x3=0),(xqy =1)

r1H—1 x99+ 2

LIA-model: 3 +— 0 x4 — 1

x5 +— 0 xgH—1

(x1 = x4) —

N

—(f(x1) = f(x2)), EUF
—(f(x2) = f(x4)),
(f(x3) =x5), (f(x1) = x6)
{1} {72} {23} {74}
EUF-model: {x5, f(z3)} {x6, f(x1)}
{f(z2)} {f(xa)}
7,J:
(11 = 24)

Branch on (5131 = 5174) j

| —

(1 = 74)

Example

LIA (71 > 0), (21 < 1), (w2 > 6)
(2132 S g + 1), (335 = T4 — 1)
(x3=0),(xqy =1)

r1H—1 x99+ 2

LIA-model: 3 +— 0 x4 — 1

x5 +— 0 xgH—1

-

ﬁ(f(ﬂi'l) — f(iUQ)),
—(f(w2) = f(24)),
(f(xs) = x5), (f(21) = 26)

{z1, 24} {72} {73}
EUF-model: {x5, f(z3)}

{we, f(x1), f(xa) H f(22)}
L

Exg — x5; Cj> Exg — x5§
4= Tg [] 4= Tg
/
(1 = T4)
7
(73 = T5)

(x4 :/:U@-)

Example

LIA (71 > 0), (21 < 1), (w2 > 6)
(2132 S g —+ 1), (£U5 = T4 — 1)
(x3 =0),(rg =1)
r1H—1 x99+ 2
LIA-model: 3 +— 0 x4 — 1
x5 +— 0 xgH—1

|

:
FONDAZIONE
BRUNO KESSLER

=(f(z1) = f(x2)), EUF
(f(x2) = f(24)),
(f(z3) = x5), (f(z1) = 26)

{z1, 24,6, f(21), f(24)}
EUF-model: {x3, x5, f(x3)}

{f (e2) ez}
\ 4

Outline

Introduction

The DPLL(T) architecture
Some relevant T-solvers
Combination of theories

Quantifiers in DPLL(T)

-

Motivations BN

B SMT solvers mostly deal with quantifier-free problems

® Often good compromise between expressiveness and efficiency
B A key factor for the success of SMT

B Yet, in practice it is useful to incorporate some support for
quantifiers

B Examples:

B Support user-provided axioms/assertions
Vi,7.(¢ < 7) — (rd(a,?) <rd(a,j)) “a is sorted”

B Axiomatisation of extra theories w/o built-in support

Va.p(x,) Va,y,z2.p(z,y) Ap(y, 2) = p(z, 2)
Vo, y.p(x,y) Aply,z) >z =y

Quantifiers in DPLL(T) =2

= Assumption: formulas of the form ¢ A A, VZ.D;(Z)
1 quantifier-free

® Can always remove existentials by Skolemization
Ve dy.o(x,y) = Ve.o(f,(x)), f, fresh

B \ain idea: handle quantifiers via axiom instantiation

= Pick a quantified clause Vx.D(Z), heuristically instantiate its
variables with quantifier-free terms ¢; . . .¢, , and add the
generated clauses {D(t;) .. (tk)} to the SAT solver

® terminate when unsat is detected

Quantifiers in DPLL(T) =5

= Assumption: formulas of the form ¢ A A\, VZ.D;(Z)
1 quantifier-free

® Can always remove existentials by Skolemization
Ve dy.o(x,y) = Ve.o(f,(x)), f, fresh

B \ain idea: handle quantifiers via axiom instantiation

= Pick a quantified clause Vx.D(Z), heuristically instantiate its
variables with quantifier-free terms ¢; . . .¢, , and add the
generated clauses {D(t;) .. (tk)} to the SAT solver

® terminate when unsat is detected

B Problems:

® how to choose the relevant instances to add?
® how to detect satisfiable formulas?

E-matching B

B Discover relevant instances using the EUF congruence
closure graph (E-graph)

® Given an axiom Vz.D(Z), an E-graph FE, a trigger p(x)and a
substitution 6 from vars to ground terms:

= D(Z)0 isrelevant < exists t € E'suchthat F = (t = p(¥)0)

® E-matching: for each axiom VZ.D; (%) with trigger p; ()
" generate all substitutions Hg st. F = (t = pi(f)Hg), tec k
= generate the axiom instances D;(%)6?
® reason modulo equivalence classes in £

B discard substitutions that are equivalent modulo £

E-matching £S5 =X

BRUNO KESSLER

B Discover relevant instances using the EUF congruence
closure graph (E-graph)

® Given an axiom VZ.D(Z), an E-graph E, a trigger p(Z)and a
substitution 6 from vars to ground terms:

= D(Z)0 isrelevant < exists t € E'suchthat F = (t = p(¥)0)

® E-matching: for each axiom VZ.D; (&) with trigger| p; (%)
" generate all substitutions 9,{ st. F = (t = pi(f)eg)’t c b
® generate the axiom instances DZ-(:E)HZ-
® reason modulo equivalence classes in £

B discard substitutions that are equivalent modulo £

user-provided or syntactically

determined from D, (Z)

Example A

Q.

(9(f(9(a)) = a) AVa.(f(z) =) AVa.(g(g(z)) = x)

V V

¥

trigger f(x) trigger g(g(x))

Q.

f

E= gty

=

V V

0 ~(g(f(9(a))) = a) {Var.(f () = 2)| Va(9(g()) =)

__trigger f(x) trigger g(g(x))

£ o(f)y \
Match with § = {z — g(a)}
f(g(a)) Add f(g(a)) = g(a)
\J
g9(a)

=

V V

0 ~(g(f(9(a))) = a) {Var.(f () = 2)| Va(9(g()) =)

__trigger f(x) trigger g(g(x))

EX o(f)y \
Match with 6 = {z — g(a)}
C’(g(a)) Add f(g(a)) = g(a)
\J
g(a)

=<

z) Aiva-(g(g(x)) = :L’f

J/

o = =(9(f(9(a))) = a) AVz.(f()

V V

dof trigger f(x) . trigger g(g(x)))
E= s lglaly \ /
Match with 0 = {x > a}
C(g(a)) Add g(g(a)) = a
g(a)\

- D(

0 ~(g(f(9(a))) = a) A Va.(f(z) = 2) \¥a(g(g(x)) =)

V V

. trigger f(x) ___trigger g(g(x)) J
E = (9(f(g(@) /
/ = \ Match with @ &< {w — CL}
F(9(a)) Add g(g(a)) = a
(i Because
el E = g(f(9(a))) = g(g(a))

REN

o = =(9(f(9(a))) = a) AVz.(f(z) =) AVa.(g(g(x)) = z)

V V

trigger f(x) trigger g(g(x))

E-matching: discussion

B Advantages:

® |ntegrates smoothly with DPLL(T)
® Fast and efficient at finding “shallow” proofs in big formulas
B A typical scenario in SMT-based verification

B However, various drawbacks:

® Can never say sat, but is not even refutationally complete

® Needs ground seeds
B Example: (Vz.P(z)) A (Vz.—P(x))

® Sensitive to bad triggers

m Example: (Vo.f(g(x)) =) [with triggerf(g(x))]
(9(a) =) A (g(b) =¢c) A ~(a=1D)

Model-based Instantiation -

midea: ¢ = o AN, (VZE.D;(Z))
= build a model M for ¢
= check if M satisfies the quantified axioms A .(VZ.D,; %)

® |f yes, return sat
otherwise, generate an instance that blocks the bad model

Model-based Instantiation BN

B [dea: ¢ < (LA /\Z (\V/sz(f))
® build a model M for ¢
= check if M satisfies the quantified axioms A .(VZ.D,; %)
® |f yes, return sat
otherwise, generate an instance that blocks the bad model

® How:

® Use a symbolic representation for)/, using lambda-terms
B Example: (f(a)=1)A(a>b) A(f(b) > f(a)+1)

def

M={a— 1,b— 0, f —=|\z.ite(x =0, 3,ite(x = 1,1,0))

Model-based Instantiation

midea: ¢ = o AN, (VZE.D;(Z))
® build a model M for ¥

14

= check if M satisfies the quantified axioms A . (VZ.D;%)

® |f yes, return sat

otherwise, generate an instance that blocks the bad model

® How:

® Use a symbolic representation for)/, using lambda-terms

def

M={a—~1,b—0,f+—

B Example: (f(a)=1)A(a>b) A(f(b) > f(a)+1)

Ax.ite(z = 0, 3, ite(xr = 1,1,0))

" Check unsatisfiability of —=VZ.D; (%)M (c)/c| with SMT

B Example: —Vz.(f(z) < z + a)[M(c)/c] —
Jdz.—~(ite(x = 0, 3,ite(x = 1,1,0)) < x + 1)

REN

- D(

Vr.(f(x) > b) A (f(x) <a+b)

m Check ¢ &
M s Lbes 0,f o Aaite(o = 0,3, ite(e = 1,1,0)))

=

m Check ¢ &
M= {a—1,b— 0, f— Az.ite(x = 0,3,ite(x = 1,1,0))}
mCheck M | (Vx.(f(x) > b) A (f(x) <a+Db),i
—((ite(z = 0, 3,ite(x = 1,1,0)) > 0)A
(ite(x = 0,3,ite(x = 1,1,0)) < 140)) E L

=

m Check ¥ &
M= {a—1,b— 0, f— Az.ite(x = 0,3,ite(x = 1,1,0))}
mCheck M | (Vx.(f(x) > b) A (f(x) <a+Db),i
—((ite(z = 0, 3,ite(x = 1,1,0)) > 0)A x
(ite(x = 0,3,ite(x = 1,1,0)) < 140)) E L

= Counterexample: {x +— 0}

=

= Check ¢ XY 4
= {a— 1f — Ax.ite(x = 0, 3,ite(x = 1,1,0))}
mCheck M | (Vx.(f(x) > b) A (f(x) <a+Db),i
—((ite(z = 0, 3,ite(x = 1,1,0)) > 0)A x
(ite(x = 0,3,ite(x = 1,1,0)) < 140)) E L

= Counterexample:

= Generated instance: (f(b) > b) A (f(b) < a + b)

REN

mCheck Y A (f(b) >b)A(f(b) <a+b) &
M={a—3b—1,f~ dzite(x =1,3,1)}

b) A (f(z) <a+Db),ie.
(ite(x = 1,3,1) <3+ 1) L &

" Check M = (Vx.(f

SAT

Gustav Björdal�

Complete Instantiation =3¢

® No hope for a complete procedure in general

® FOL without theories is only semi-decidable...
= _.and in fact undecidable with (some) theories (e.g. LIA)

B However, many decidable fragments exist

= With suitable instantiation strategies, model-based techniques
can be applied effectively

Finite Model Finding =

B |[dea: search for models interpreting quantified variables over
finite domains

= with finite domain, complete instantiation is possible

" if the domains are small (and the instantiation smart),
might also be practical

= Applicable when quantified vars range over uninterpreted sorts

Finite Model Finding =X

B |[dea: search for models interpreting quantified variables over
finite domains

= with finite domain, complete instantiation is possible

" if the domains are small (and the instantiation smart),
might also be practical

= Applicable when quantified vars range over uninterpreted sorts

® How:

® Add a T-solver for cardinality constraints on uninterpreted sorts
B Use splitting on-demand with card. lemmas (|S| < k) v (|S| > k)
B Tightly integrated with EUF solver

= When “finite” model is found, instantiate exhaustively the axioms

B But avoid redundant instances
® Return sat if a model is found

=<

Example

o = (f(a) = g(b)) NVx.~(f(z) = f(g(x))

N

Y

" Fi . wr 10, /()]
Find model for ¢: M {b,g(b)}

Example

© d:efj(f(a) = g(b)) N'Vz.=(f(2) = fg(x))
(&

® Find model for ¢¥: M & 10, f(a)}

{0,9(b)}
= Try cardinality (]S] <1) 3¢

REN

Example

© d:efj(f(a) = g(b)) N'Vz.=(f(2) = fg(x))
(&

® Find model for ¢¥: M & 10, f(a)}

{b,9(b)}
= Try cardinality (]S] <1) 3¢
® Try cardinality (|S| <2) &

A

Example

© d:efj(f(a) = g(b)) N'Vz.=(f(2) = fg(x))
(&

® Find model for ¢¥: M & 10, f(a)}

{b,9(b)}
= Try cardinality (]S] <1) 3¢
® Try cardinality (|S| <2) &

14

B Generate instances using representatives of equiv. classes

L= =(f(a) = flgla)) L=-(f(b)=
B Check satisfiability of ¢ A (|S| <2) A1 A Iy

f(g(d))

Example

o ~(f(a) = g(b) AVa.~(f () = f(g()
(&

® Find model for ¢¥: M < ta, f(a)}

{0, 9(b)}

= Try cardinality (]S] <1) 3¢
= Try cardinality (|S] <2) &

B Generate instances using representatives of equiv. classes
I = =(f(a) = flg(a)) T2 = = (f(b) = f(g(b))
B Check satisfiability of 1 A (|S| < 2) A L1 A I

w {a, f(a), Fg(®)
= g). fe@) ey ¥ I

=

Selected bibliography =€

DISCLAIMER: this is not meant to be complete, just a starting
point. Apologies to missing authors/works

B SMT in general and DPLL(T)

® Nieuwenhuis, Oliveras, Tinelli. Solving SAT and SAT Modulo
Theories: From an abstract Davis--Putham--Logemann--
Loveland procedure to DPLL(T). J. ACM 2006

® Sebastiani. Lazy Satisfiability Modulo Theories. JSAT 2007

= Barrett, Sebastiani, Seshia, Tinelli. Satisfiability Modulo
Theories. SAT handbook 2009

® Theory solvers

u Detlefs, Nelson, Saxe. Simplify: a theorem prover for program
checking. J. ACM 2005

® Nieuwenhuis, Oliveras. Fast congruence closure and
extensions. Inf. Comput. 2007

Selected bibliography =€

® Theory solvers (cont'd)

® Dutertre, de Moura. A Fast Linear-Arithmetic Solver for
DPLL(T). CAV 2006

® de Moura, Bjgrner. Model-based Theory Combination. Electr.
Notes Theor. Comput. Sci. 2008

® Brummayer, Biere. Lemmas on Demand for the Extensional
Theory of Arrays. JSAT 2009

= de Moura, Bjgrner. Generalized, efficient array decision
procedures. FMCAD 2009

® Jovanovic, de Moura. Cutting to the Chase - Solving Linear
Integer Arithmetic. J. Autom. Reasoning 2013

® Hadarean, Bansal, Jovanovic, Barrett, Tinelli. A Tale of Two
Solvers: Eager and Lazy Approaches to Bit-Vectors. CAV
2014

Selected bibliography =€

B Quantifiers

® de Moura, Bjgrner. Efficient E-Matching for SMT Solvers.
CADE 2007

¥ Ge, de Moura. Complete Instantiation for Quantified
Formulas in Satisfiabiliby Modulo Theories. CAV 2009

® Reynolds, Tinelli, Goel, Krstic. Finite Model Finding in SMT.
CAV 2013

Thank You

=<

