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The SMT problem

 Satisfiability Modulo Theories

 Given a (quantifier-free) FOL formula and a (decidable) 
combination of theories                         , is there an assignment
to the free variables                     that makes the formula true?

 Example:
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 Example:



SMT: some history

The “early days”

 The Simplify theorem prover [Detlefs, Nelson, Saxe]

 The grandfather of SMT solvers

 Efficient decision procedures

 Equality logic + extensions (Congruence Closure)

 Linear arithmetic (Simplex)

 Theory combination (Nelson-Oppen method)

 Quantifiers (E-matching with triggers)

 Inefficient boolean search



SMT: some history - 2

The SAT breakthrough

 late '90s - early 2000: major progress in SAT solvers

 CDCL paradigm: Conflict-Driven Clause-Learning DPLL

 Grasp, (z)Chaff, Berkmin, MiniSat, ...

 combine strengths of model search and proof search 
in a single procedure

 Model search: efficient BCP and variable selection heuristics

 Proof search: conflict analysis, non-chronological backtracking, 
clause learning

 Smart ideas + clever engineering “tricks”



SMT: some history - 3

From SAT to SMT

 exploit advances in SAT solving for richer logics

 Boolean combinations of constraints over (combinations of) 
background theories

 The Eager approach (a.k.a. “bit-blasting”)

 Encode an SMT formula into propositional logic

 Solve with an off-the-shelf efficient SAT solver

 Pioneered by UCLID

 Still the dominant approach for bit-vector arithmetic



SMT: some history - 4

The Lazy approach and DPLL(T) (2002 – 2004)

 (non-trivial) combination of SAT (CDCL) and T-solvers

 SAT-solver enumerates models of boolean skeleton of formula

 Theory solvers check consistency in the theory

 Most popular approach (e.g. Barcelogic, CVC4, MathSAT, 
SMTInterpol, Yices, Z3, VeriT, ...)

 Yices 1.0 (2006)

 The first efficient “general-purpose” SMT solver

 Z3 1.0 (2008)

 > 1600 citations, most influential tool paper at TACAS
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The lazy approach to SMT

 A theory T is a set of structures (D, I) over a signature    :

 D a domain for variables

 I an interpretation for function symbols
 



The lazy approach to SMT

 A theory T is a set of structures (D, I) over a signature    :

 D a domain for variables

 I an interpretation for function symbols
 

 Deciding the satisfiability of     modulo      can be reduced
to deciding    -satisfiability of conjunctions (sets) of 
constraints

 Can exploit efficient decision procedures for sets of constraints, 
existing for many important theories

 Naive approach: convert     to an equivalent      in disjunctive 
normal form (DNF), and check each conjunction separately

 Main idea of lazy SMT: use an efficient SAT solver to 
enumerate conjuncts without computing the DNF explicitly



A basic approach

 Offline lazy SMT

F = CNF_bool(  )
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT
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A basic approach

 Offline lazy SMT

F = CNF_bool(  )
while true:

res, M = check_SAT(F)
if res == true:

M' = to_T(M)
res = check_T(M')
if res == true:

return SAT
else:

F += !M
else:

return UNSAT

Boolean 
reasoning

Theory
reasoning

Block bad solutions



Example



Example



Example

UNSAT → add        and continue



DPLL(T)

 Online approach to lazy SMT

 Tight integration between a CDCL-like SAT solver (“DPLL”) 
and the decision procedure for T (“T-solver”), based on:

 T-driven backjumping and learning

 Early pruning

 T-solver incrementality

 T-propagation

 Filtering of assignments to check

 Creation of new T-atoms and T-lemmas “on-demand”

 ...



T-backjumping and T-learning

 When unsat, T-solver can produce reason for inconsistency

 T-conflict set: inconsistent subset of the input constraints

 T-conflict clause given as input to the CDCL conflict analysis

 Drives non-chronological backtracking (backjumping)

 Can be learned by the SAT solver

 The less redundant the T-conflict set, the more search is 
saved

 Ideally, should be minimal (irredundant)

 Removing any element makes the set consistent
 But for some theories might be expensive to achieve

 Trade-off between size and cost
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Conflict analysis:
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Early pruning

 Invoke T-solver on intermediate assignments, during the 
CDCL search

 If unsat is returned, can backtrack immediately

 Advantage: can drastically prune the search tree

 Drawback: possibly many useless (expensive) T-solver calls
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WITHOUT EARLY−PRUNING
T−solver calls



Early pruning

 Different strategies to call T-solver

 Eagerly, every time a new atom is assigned

 After every round of BCP

 Heuristically, based on some statistics (e.g. effectivenes, …)

 No need of a conclusive answer during early pruning calls

 Can apply approximate checks

 Trade effectiveness for efficiency

 Example: on linear integer arithmetic, solve only the real 
relaxation during early pruning calls
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SAT



Example

SAT



Example

UNSAT

T-conflict = 



T-solver incrementality

 With early pruning, T-solvers invoked very frequently on 
similar problems

 Stack of constraints (the assignment stack of CDCL) 
incrementally updated

 Incrementality: when a new constraint is added, no need to 
redo all the computation “from scratch”

 Backtrackability: support cheap (stack-based) removal of 
constraints without “resetting” the internal state

 Crucial for efficiency

 Distinguishing feature for effective integration in DPLL(T)



T-propagation

 T-solvers might support deduction of unassigned constraints

 If early pruning check on M returns sat, T-solver might also return 
a set D of unsassigned atoms such that                  for all

 T-propagation: add each such l to the CDCL stack

 As if BCP was applied to the (T-valid) clause                (T-reason)

 But do not compute the T-reason clause explicitly yet

 Lazy explanation: compute T-reason clause only if needed 
during conflict analysis

 Like T-conflicts, the less redundant the better
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Conflict analysis → 
compute 

T-reason for   
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     not involved in
conflict analysis → 

 no need to compute 
T-reason   



Filtering of assignments

 Remove unnecessary literals from current assignment M

 Irrelevant literals:                                    (    arbitary, not CNF)

 Ghost literals:    occurs only in clauses satisfied by

 Pure literals:                and    occurs only positively in   
 Note: this is not the pure-literal rule of SAT!

 Pros:

 reduce effort for T-solver

 increases the chances of finding a solution

 Cons:

 may weaken the effect of early pruning (esp. with T-propagation)

 may introduce overhead in SAT search

 Typically used for expensive theories
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Ghost!
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SAT



T-atoms and T-lemmas on demand

 Some T-solvers might need to perform internal case splits to 
decide satisfiability

 Example: linear integer arithmetic

 Splitting on-demand: use the SAT solver for case splits

 Encode splits as T-valid clauses (T-lemmas) with fresh T-atoms

 Generated on-the-fly during search, when needed

 Benefits: reuse the efficient SAT search

 simplify the implementation
 exploit advanced search-space exploration techniques 

(backjumping, learning, restarts, ...)
 Potential drawback: “pollute” the SAT search



T-atoms and T-lemmas on demand

 T-solver can now return unknown also for complete checks

 In this case, it must also produce one or more T-lemmas

 SAT solver learns the lemmas and continues searching

 eventually, T-solver can decide sat/unsat

 Termination issues

 If SAT solver drops lemmas, might get into an infinite loop

 similar to the Boolean case (and the “basic” SMT case), similar 
solution (e.g. monotonically increase # of kept lemmas)

 T-solver can generate an infinite number of new T-atoms!

 For several theories (e.g. linear integer arithmetic, arrays) 
enough to draw new T-atoms from a finite set 
(dependent on the input problem)



T-solver interface example

class TheorySolver {

    bool tell_atom(Var boolatom, Expr tatom);

    void new_decision_level();
    void backtrack(int level);

    void assume(Lit l);
    lbool check(bool approx);
    
    void get_conflict(LitList &out);
    
    Lit get_next_implied();
    bool get_explanation(Lit implied, LitList &out);

    bool get_lemma(LitList &out);

    Expr get_value(Expr term);
};



DPLL(T) example

def DPLL-T():
 while True:
    conflict = False
    if unit_propagation():
       res = T.check(!all_assigned())
       if res == False: conflict = True
       elif res == True: conflict = theory_propagation()
       elif learn_T_lemmas(): continue
       elif !all_assigned(): decide()
       else:
          build_model() 
          return SAT
    else: conflict = True
    if conflict:
       lvl, cls = conflict_analysis()
       if lvl < 0: return UNSAT
       else:
          backtrack(lvl)
          learn(cls)



DPLL(T) example

def DPLL-T():
 while True:
    conflict = False
    if unit_propagation():
       res = T.check(!all_assigned())
       if res == False: conflict = True
       elif res == True: conflict = theory_propagation()
       elif learn_T_lemmas(): continue
       elif !all_assigned(): decide()
       else:
          build_model() 
          return SAT
    else: conflict = True
    if conflict:
       lvl, cls = conflict_analysis()
       if lvl < 0: return UNSAT
       else:
          backtrack(lvl)
          learn(cls)

call T.assume(lit)

call T.get_next_implied()

call T.get_lemma()

call T.new_decision_level()
   T.assume(lit)

call T.get_value(e)

call T.get_conflict(c)
   T.get_explanation(l, e)

call T.backtrack(lvl)



Outline

Introduction

The DPLL(T) architecture

Some relevant T-solvers

Combination of theories

Quantifiers in DPLL(T)



Equality (EUF)

 Polynomial time O(n log n) congruence closure procedure

 Fully incremental and backtrackable (stack-based)

 Supports efficient T-propagation

 Exhaustive for positive equalities

 Incomplete for disequalities

 Lazy explanations and conflict generation

 Typically used as a “core” T-solver

 Supports efficient extensions, e.g.

 Integer offsets

 Bit-vector slicing and concatenation



Example



Example



Example



Example



Example



Example



Example



Example

get_conflict():



Example

get_conflict():



Example

get_conflict():



Example

get_conflict():



Example

get_conflict():



Example

get_conflict():



Example

get_conflict():



Example

get_conflict():



 Constraints of the form

 Variant of simplex specifically designed for DPLL(T)

 Very efficient backtracking

 Incremental checks

 Cheap deduction of unsassigned literals

 Minimal explanations generation

 Can handle efficiently also strict inequalities 

 Rewrite               to                     , treat    symbolically
 Worst-case exponential (although LRA is polynomial), 

but fast in practice

Linear Rational Arithmetic (LRA)



Simplex for DPLL(T)

Preprocessing:

Tableau of equations (fixed) + bounds (added/removed) 

Candidate solution      always consistent with the tableau
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Preprocessing:
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Preprocessing:

Tableau of equations (fixed) + bounds (added/removed)
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Linear Integer Arithmetic (LIA)

 NP-complete problem

 Popular approach: simplex + branch and bound

 Approximate checks solve only over the rationals

 In complete checks, force integrality of variables by adding either:

 Branch and bound lemmas
 Cutting plane lemmas

 Inequalities entailed by the current constraints, 
excluding only non-integer solutions

 Gomory cuts commonly used
 Using splitting on-demand

 Might also include other specialized sub-solvers for tractable 
fragments

 E.g. specialized equational reasoning



Arrays (A)

 Read (rd) and write (wr) operations over arrays

 Equality over array variables (extensionality)

 Example: 

 Common approach: reduction to EUF via lazy axiom 
instantiation

 read-over-write:

 extensionality:

 Add lemmas on-demand by instantiating the quantified variables 
with terms occurring in the input formula

 Using smart “frugal” strategies: check candidate solution, 
instantiate only (potentially) violated axioms



Example

EUF solution (equivalence classes): 
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Add violated lemma:



Example

EUF solution (equivalence classes): 

Add violated lemma:

EUF solution (equivalence classes): 

Add violated lemma:

EUF solver returns UNSAT



Bit-vectors (BV)

 Most solvers use an eager approach for BV, not DPLL(T)

 Heavy preprocessing based on rewriting rules + bit-blasting

 Example: 

 Alternative: lazy bit-blasting, compatible with DPLL(T)

 Use a second SAT solver as T-solver for BV

 bit-blast only BV-atoms, not the whole formula
 Boolean skeleton of the formula handled by the main SAT solver

 Easier integration with other theories and functionalities based on 
a DPLL(T) architecture

 Can integrate additional specialized sub-solvers

 Eager still better performance-wise



Lazy bit-blasting: implementation

 For each BV-atom     occurring in the input formula, create a 
fresh Boolean “label” variable     , and bit-blast to SAT-BV 
the formula

 Exploit SAT solving under assumptions

 When the main solver generates the BV-assignment 

 Invoke SAT-BV with the assumptions

 If unsat, generate an unsat core of the assumptions 

 From its negation, generate a BV-lemma 
and send it to the main solver as a blocking clause, like in 
standard DPLL(T)

®
l®

(l® $ ®)

®1 : : : ®n

:®i _ : : : _ :®j
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Combination of theories

 Very often in practice more than one theory is needed

 Example (from intro): 

 How to build solvers for SMT(T
1
 … T

n
) that are both 

efficient and modular?

 Can we reuse T
i
-solvers and combine them?

 Under what conditions?

 How do we go from DPLL(T) to DPLL(T
1
 … T

n
)?



The Nelson-Oppen method

 A general technique for combining T
i
-solvers

 Requires:

 T
i
's to have disjoint signatures, i.e. no symbols in common 

(other than =)

 T
i
's to be stably-infinite, i.e. every quantifier-free T

i
-satisfiable 

formula is satisfiable in an infinite model of T
i

 Examples: EUF, LIA, LRA, A
 Counterexample: BV
 (Extensions exist to deal with some non-stably-infinite theories)



The Nelson-Oppen method

How it works (for              )

 Preprocessing purification step on the input formula

 Pure formula: no atom containing symbols of different T
i
's 

(except =)

 By labeling subterms

 Example:
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The Nelson-Oppen method

How it works (for              )

 Preprocessing purification step on the input formula

 Pure formula: no atom containing symbols of different T
i
's 

(except =)

 By labeling subterms

 Example:

 T
i
-solvers cooperate by exchanging (disjunctions of) 

entailed interface equalities

 I.e., equalities between shared variables 
Interface variables
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LIA EUF
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LIA EUF

No more
deductions possible



 Traditional approach: 
a single combined 
Nelson-Oppen T-solver

  T
i
-solvers exchange 

(disjunctions of) implied 
interface equalities 
internally

 Interface equalities 
invisible to the SAT solver

SAT solver

T1 T2Deduce 

Assignment          -lemmaT1 [ T2

T1 [ T2

 Drawbacks: T
i
-solvers need to:

 be deduction complete for interface equalities
 be able to perform case splits internally

DPLL(T) for combined theories



 Alternative to traditional approach

 Each T
i
-solver interacts directly and only with the SAT solver

 SAT solver takes care of (all or part of) the combination

 Augment the Boolean search space with the possible 
interface equalities 

 Advantages:

 No need of complete      
deduction of interface 
equalities

 Case analysis via
splitting on-demand

SAT solver

T1 T2

Assignment
 

        -lemmaT2        -lemmaT1

Delayed Theory Combination



Delayed theory combination in practice

 Model-based heuristic:

 Initially, no interface equalities generated

 When a solution is found, check against all the possible interface 
equalities

 If T
1
 and T

2
 agree on the implied equalities, return SAT

 Otherwise, branch on equalities implied by T
1
-model 

but not by T
2
-model

 Optimistic approach, similar to axiom instantiation

 Still allow T
i
-solvers to exchange equalities internally

 But no requirement of completeness

 Avoids “polluting” the SAT space with equality deductions leading 
to conflicts
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LIA EUF

LIA-model: EUF-model: 

Branch on                  
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LIA EUF

LIA-model: EUF-model: 

...  



Example

LIA EUF

LIA-model: EUF-model: 

...  
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Motivations

 SMT solvers mostly deal with quantifier-free problems

 Often good compromise between expressiveness and efficiency

 A key factor for the success of SMT

 Yet, in practice it is useful to incorporate some support for 
quantifiers 

 Examples:

 Support user-provided axioms/assertions
                                                                 

 Axiomatisation of extra theories w/o built-in support



Quantifiers in DPLL(T)

 Assumption: formulas of the form
    quantifier-free

 Can always remove existentials by Skolemization

 Main idea: handle quantifiers via axiom instantiation

 Pick a quantified clause                 , heuristically instantiate its 
variables with quantifier-free terms               , and add the 
generated clauses                               to the SAT solver

 terminate when unsat is detected



Quantifiers in DPLL(T)

 Assumption: formulas of the form
    quantifier-free

 Can always remove existentials by Skolemization

 Main idea: handle quantifiers via axiom instantiation

 Pick a quantified clause                 , heuristically instantiate its 
variables with quantifier-free terms               , and add the 
generated clauses                               to the SAT solver

 terminate when unsat is detected

 Problems:

 how to choose the relevant instances to add?

 how to detect satisfiable formulas?



E-matching

 Discover relevant instances using the EUF congruence 
closure graph (E-graph)

 Given an axiom               , an E-graph    , a trigger         and a 
substitution    from vars to ground terms:

              is relevant       exists            such that

 E-matching: for each axiom                 with trigger

 generate all substitutions      s.t. 

 generate the axiom instances

 reason modulo equivalence classes in

 discard substitutions that are equivalent modulo 
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 Discover relevant instances using the EUF congruence 
closure graph (E-graph)

 Given an axiom               , an E-graph    , a trigger         and a 
substitution    from vars to ground terms:

              is relevant       exists            such that

 E-matching: for each axiom                 with trigger

 generate all substitutions      s.t. 

 generate the axiom instances

 reason modulo equivalence classes in

 discard substitutions that are equivalent modulo 

user-provided or syntactically 
determined from 
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E-matching: discussion

 Advantages:

 Integrates smoothly with DPLL(T)

 Fast and efficient at finding “shallow” proofs in big formulas

 A typical scenario in SMT-based verification

 However, various drawbacks:

 Can never say sat, but is not even refutationally complete

 Needs ground seeds

 Example:

 Sensitive to bad triggers

 Example:
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 Idea:

 build a model       for 

 check if       satisfies the quantified axioms

 If yes, return sat
otherwise, generate an instance that blocks the bad model

 How:

 Use a symbolic representation for     , using lambda-terms

 Example:

 Check unsatisfiability of                                   with SMT

 Example: 
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 Counterexample:                   

 Generated instance:
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 Check

 Check                                                                 , i.e.

SAT
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Complete Instantiation

 No hope for a complete procedure in general

 FOL without theories is only semi-decidable...

 ...and in fact undecidable with (some) theories (e.g. LIA)

 However, many decidable fragments exist

 With suitable instantiation strategies, model-based techniques 
can be applied effectively



Finite Model Finding

 Idea: search for models interpreting quantified variables over 
finite domains

 with finite domain, complete instantiation is possible

 if the domains are small (and the instantiation smart), 
might also be practical

 Applicable when quantified vars range over uninterpreted sorts



Finite Model Finding

 Idea: search for models interpreting quantified variables over 
finite domains

 with finite domain, complete instantiation is possible

 if the domains are small (and the instantiation smart), 
might also be practical

 Applicable when quantified vars range over uninterpreted sorts

 How: 

 Add a T-solver for cardinality constraints on uninterpreted sorts

 Use splitting on-demand with card. lemmas 
 Tightly integrated with EUF solver

 When “finite” model is found, instantiate exhaustively the axioms

 But avoid redundant instances
 Return sat if a model is found
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 Find model for     :

 Try cardinality 

 Try cardinality

 Generate instances using representatives of equiv. classes

 Check satisfiability of

SAT
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