
Local Search for CSPs

Alan Mackworth

UBC CS 322 – CSP 5

February 4, 2013

Textbook §4.8

•  Solving CSPs is NP-hard
-  Search space for many CSPs is huge
-  Exponential in the number of variables
-  Even arc consistency with domain splitting is often not enough

•  Alternative: local search
–  Often finds a solution quickly
–  But cannot prove that there is no solution

•  Useful method in practice
–  Best available method for many constraint satisfaction and

constraint optimization problems
–  Extremely general!

–  Works for problems other than CSPs
–  E.g. arc consistency only works for CSPs

Local Search: Motivation

Some Successful Application Areas for Local Search

12

Probabilistic
Reasoning

 Protein Folding

Propositional
satisfiability (SAT)

University Timetabling

RNA structure
design

Scheduling of Hubble
Space Telescope:
1 week → 10 seconds

Local Search
•  Idea:

–  Consider the space of complete assignments of values to variables
(all possible worlds)

–  Neighbours of a current node are similar variable assignments
–  Move from one node to another according to a function that scores

how good each assignment is

13

1

1

1

3

1

1

3

1

8

8

8

8

8

8
8

8

8

8

7

7
7

7
7

7

7
7

7

5

2

2

3

2
2

3

3
4

3

3

4

4 4

4

4

4

5

5

5

5

5 6

6

6

9

2

1

1

3

1

1

3

1

8

8

8

8

8

8
8

8

8

8

7

7
7

7
7

7

7
7

7

5

2

2

3

2
2

3

3
4

3

3

4

4 4

4

4

4

5

5

5

5

5 6

6

6

9

Local Search Problem: Definition

14

Definition: A local search problem consists of a:

CSP: a set of variables, domains for these variables, and
constraints on their joint values. A node in the search space will
be a complete assignment to all of the variables.

Neighbour relation: an edge in the search space will exist
when the neighbour relation holds between a pair of nodes.

Scoring function: h(n), judges cost of a node (want to minimize)
 - E.g. the number of constraints violated in node n.
 - E.g. the cost of a state in an optimization context.

Example: Sudoku as a local search problem
CSP: usual Sudoku CSP

-  One variable per cell; domains {1,…,9};
-  Constraints:

each number occurs once per row, per column, and per 3x3 box
Neighbour relation: value of a single cell differs
Scoring function: number of constraint violations

1

1

1

3

1

1

3

1

8

8

8

8

8

8
8

8

8

8

7

7
7

7
7

7

7
7

7

5

2

2

3

2
2

3

3
4

3

3

4

4 4

4

4

4

5

5

5

5

5 6

6

6

9

2

1

1

3

1

1

3

1

8

8

8

8

8

8
8

8

8

8

7

7
7

7
7

7

7
7

7

5

2

2

3

2
2

3

3
4

3

3

4

4 4

4

4

4

5

5

5

5

5 6

6

6

9

V1 = v1 ,V2 = v1 ,.., Vn = v1

Search Space for Local Search

V1 = v2 ,V2 = v1 ,.., Vn = v1

V1 = v4 ,V2 = v1 ,.., Vn = v1

V1 = v1 ,V2 = vn ,.., Vn = v1

V1 = v4 ,V2 = v2 ,.., Vn = v1

V1 = v4 ,V2 = v3 ,.., Vn = v1

V1 = v4 ,V2 = v1 ,.., Vn = v2

Only the current node is kept in memory at each step.
Very different from the systematic tree search approaches we have
seen so far! Local search does NOT backtrack!

Iterative Best Improvement
•  How to determine the neighbor node to be selected?
•  Iterative Best Improvement:

–  select the neighbor that optimizes some evaluation function
•  Which strategy would make sense? Select neighbour with …

•  Evaluation function:
h(n): number of constraint violations in state n

•  Greedy descent: evaluate h(n) for each neighbour, pick the neighbour n
with minimal h(n)

•  Hill climbing: equivalent algorithm for maximization problems
–  Minimizing h(n) is identical to maximizing –h(n)

Minimal number of constraint violations

Similar number of constraint violations as current state
Maximal number of constraint violations

No constraint violations

19

Example: Greedy descent for Sudoku
Assign random numbers

between 1 and 9 to blank
fields

Repeat
–  For each cell & each number:

Evaluate how many constraint
violations changing the
assignment would yield

–  Choose the cell and number
that leads to the fewest
violated constraints; change it

Until solved

1

1

1

3

1

1

3

1

8

8

8

8

8

8
8

8

8

8

7

7
7

7
7

7

7
7

7

5

2

2

3

2
2

3

3
4

3

3

4

4 4

4

4

4

5

5

5

5

5 6

6

6

9

2

Example: Greedy descent for Sudoku
Example for one local search step:
Reduces #constraint violations by 3:

-  Two 1s in the first column
-  Two 1s in the first row
-  Two 1s in the top-left box

1

1

1

3

1

1

3

1

8

8

8

8

8

8
8

8

8

8

7

7
7

7
7

7

7
7

7

5

2

2

3

2
2

3

3
4

3

3

4

4 4

4

4

4

5

5

5

5

5 6

6

6

9

2

1

1

3

1

1

3

1

8

8

8

8

8

8
8

8

8

8

7

7
7

7
7

7

7
7

7

5

2

2

3

2
2

3

3
4

3

3

4

4 4

4

4

4

5

5

5

5

5 6

6

6

9

General Local Search Algorithm

Random
initialization

Local search
step

1: Procedure Local-Search(V,dom,C)
2: Inputs
3: V: a set of variables
4: dom: a function such that dom(X) is the domain of variable X
5: C: set of constraints to be satisfied
6: Output complete assignment that satisfies the constraints
7: Local
8: A[V] an array of values indexed by V
9: repeat
10: for each variable X do
11: A[X] ←a random value in dom(X);
12:
13: while (stopping criterion not met & A is not a satisfying assignment)
14: Select a variable Y and a value V �dom(Y)
15: Set A[Y] ←V
16:
17: if (A is a satisfying assignment) then
18: return A
19:
20: until termination

General Local Search Algorithm

Based on local information.
E.g., for each neighbour evaluate
how many constraints are unsatisfied.

Greedy descent: select Y and V to minimize
#unsatisfied constraints at each step

1: Procedure Local-Search(V,dom,C)
2: Inputs
3: V: a set of variables
4: dom: a function such that dom(X) is the domain of variable X
5: C: set of constraints to be satisfied
6: Output complete assignment that satisfies the constraints
7: Local
8: A[V] an array of values indexed by V
9: repeat
10: for each variable X do
11: A[X] ←a random value in dom(X);
12:
13: while (stopping criterion not met & A is not a satisfying assignment)
14: Select a variable Y and a value V �dom(Y)
15: Set A[Y] ←V
16:
17: if (A is a satisfying assignment) then
18: return A
19:
20: until termination

Another example: N-Queens
•  Put n queens on an n × n board with no two queens

on the same row, column, or diagonal (i.e attacking
each other)

•  Positions a queen
can attack

Example: N-queens

h = 5 h = ? h = ?
3 1 0 2

 Example: N-Queens

h = 17 h = 1

5 steps

Each cell lists h (i.e. #constraints unsatisfied) if you move
the queen from that column into the cell

The problem of local minima

•  Which move should we
pick in this situation?
-  Current cost: h=1
-  No single move can

improve on this
-  In fact, every single move

only makes things worse
(h ≥ 2)

•  Locally optimal solution
–  Since we are minimizing:

local minimum

26

Local minima

 Local minima

•  Most research in local search concerns effective
mechanisms for escaping from local minima

•  Want to quickly explore many local minima:
global minimum is a local minimum, too

27

Evaluation function

State Space (1 variable)

Evaluation function

State Space
(1 variable)

B

Different neighbourhoods
•  Local minima are defined with respect to a neighbourhood.
•  Neighbourhood: states resulting from some small

incremental change to current variable assignment
•  1-exchange neighbourhood

–  One stage selection: all assignments that differ in exactly one
variable.
How many of those are there for N variables and domain size d?

–  O(dN). N variables, for each of them need to check d-1 values

–  Two stage selection: first choose a variable (e.g. the one in the
most conflicts), then best value

•  Lower computational complexity: O(N+d). But less progress per step

•  2-exchange neighbourhood
–  All variable assignments that differ in exactly two variables. O(N2d2)
–  More powerful: local optimum for 1-exchange neighbourhood might

not be local optimum for 2-exchange neighbourhood
28

O(N+d) O(Nd) O(dN) O(Nd)

Different neighbourhoods
•  How about an 8-exchange

neighbourhood?
-  All minima with respect to

the 8-exchange
neighbourhood are global
minima

-  Why?
-  How expensive is the 8-

exchange neighbourhood?
-  O(N8d8)

-  In general, N-exchange
neighbourhood includes
all solutions
-  Where N is the number of

variables
-  But is exponentially large

29

Stochastic Local Search

•  We will use greedy steps to find local minima
–  Move to neighbour with best evaluation function value

•  We will use randomness to avoid getting trapped in local
minima

31

General Local Search Algorithm

Extreme case 1:
random sampling.
Restart at every step:
Stopping criterion is �true�

Random
restart

1: Procedure Local-Search(V,dom,C)
2: Inputs
3: V: a set of variables
4: dom: a function such that dom(X) is the domain of variable X
5: C: set of constraints to be satisfied
6: Output complete assignment that satisfies the constraints
7: Local
8: A[V] an array of values indexed by V
9: repeat
10: for each variable X do
11: A[X] ←a random value in dom(X);
12:
13: while (stopping criterion not met & A is not a satisfying assignment)
14: Select a variable Y and a value V �dom(Y)
15: Set A[Y] ←V
16:
17: if (A is a satisfying assignment) then
18: return A
19:
20: until termination

General Local Search Algorithm

Extreme case 2: greedy descent
Only restart in local minima:
Stopping criterion is �no more
improvement in eval. function h�
Select variable/value greedily.

1: Procedure Local-Search(V,dom,C)
2: Inputs
3: V: a set of variables
4: dom: a function such that dom(X) is the domain of variable X
5: C: set of constraints to be satisfied
6: Output complete assignment that satisfies the constraints
7: Local
8: A[V] an array of values indexed by V
9: repeat
10: for each variable X do
11: A[X] ←a random value in dom(X);
12:
13: while (stopping criterion not met & A is not a satisfying assignment)
14: Select a variable Y and a value V �dom(Y)
15: Set A[Y] ←V
16:
17: if (A is a satisfying assignment) then
18: return A
19:
20: until termination

Greedy descent vs. Random sampling

•  Greedy descent is
–  good for finding local minima
–  bad for exploring new parts of the search space

•  Random sampling is
–  good for exploring new parts of the search space
–  bad for finding local minima

•  A mix of the two can work very well

11

Greedy Descent + Randomness

•  Greedy steps
–  Move to neighbour with best evaluation function value

•  Next to greedy steps, we can allow for:
1. Random restart:

reassign random values to all variables (i.e. start fresh)

2. Random steps:
move to a random neighbour

•  Only doing random steps (no greedy steps at all)
is called �random walk�

12

Which randomized method would work best in each of

the these two search spaces?

Greedy descent with random steps best on A
Greedy descent with random restart best on B
 Greedy descent with random steps best on B
Greedy descent with random restart best on A
 equivalent

Evaluation function

State Space (1 variable)

Evaluation function

State Space
(1 variable)

A B

•  But these examples are simplified extreme cases for illustration
-  in practice, you don’t know what your search space looks like

•  Usually integrating both kinds of randomization works best

Greedy descent with random steps best on B
Greedy descent with random restart best on A

Evaluation function

State Space (1 variable)

Evaluation function

State Space
(1 variable)

A B

Which randomized method would work best in each of

the these two search spaces?

•  Start node: random assignment

•  Goal: assignment with zero unsatisfied constraints

•  Heuristic function h: number of unsatisfied constraints
–  Lower values of the function are better

•  Stochastic local search is a mix of:

–  Greedy descent: move to neighbor with lowest h
–  Random walk: take some random steps
–  Random restart: reassigning values to all variables

Stochastic Local Search for CSPs

Stochastic Local Search for CSPs
•  More examples of ways to add randomness to local search

for a CSP

•  In one stage selection of variable and value:
–  instead choose a random variable-value pair

•  In two stage selection (first select variable V, then new value for V):
–  Selecting variables:

•  Sometimes choose the variable which participates in the largest
number of conflicts

•  Sometimes choose a random variable that participates in some conflict
•  Sometimes choose a random variable

–  Selecting values

•  Sometimes choose the best value for the chosen variable: the one
yielding minimal h(n)

•  Sometimes choose a random value for the chosen variable 16

Greedy Descent with Min-Conflict Heuristic

•  One of the best SLS techniques for CSP solving:
–  At random, select one of the variables v that participates in a

violated constraint
–  Set v to one of the values that minimizes the number of unsatisfied

constraints

•  Can be implemented efficiently:
–  Data structure 1 stores currently violated constraints
–  Data structure 2 stores variables that are involved in violated

constraints

–  Each step only yields incremental changes to these data structures

•  Most SLS algorithms can be implemented similarly
efficiently → very small complexity per search step

17

Evaluating SLS algorithms
•  SLS algorithms are randomized

–  The time taken until they solve a problem is a random variable
–  It is entirely normal to have runtime variations of 2 orders of

magnitude in repeated runs!
•  E.g. 0.1 seconds in one run, 10 seconds in the next one
•  On the same problem instance (only difference: random seed)
•  Sometimes SLS algorithm doesn’t even terminate at all: stagnation

•  If an SLS algorithm sometimes stagnates, what is its mean
runtime (across many runs)?
–  Infinity!
–  In practice, one often counts timeouts as some fixed large value X

•  But results depend on which X is chosen

19

•  A better way to evaluate empirical performance
–  Runtime distributions

•  Perform many runs (e.g. below: 1000 runs)
•  Consider the empirical distribution of the runtimes

–  Sort the empirical runtimes
(decreasing)

Comparing SLS algorithms

20

•  A better way to evaluate empirical performance
–  Runtime distributions

•  Perform many runs (e.g. below: 1000 runs)
•  Consider the empirical distribution of the runtimes

–  Sort the empirical runtimes (decreasing)
–  Rotate graph 90 degrees. E.g. below: longest run took 12 seconds

Comparing SLS algorithms

21

Comparing runtime distributions
 x axis: runtime (or number of steps)

y axis: proportion (or number) of runs solved in that runtime
–  Typically use a log scale on the x axis

��	(���������
��.�
)��������#
#�
�
� ��.�
)�
��
�����,������
��

�������
���

 28% solved
after 10 steps,
then stagnate

 57% solved
after 80 steps,
then stagnate

 Slow, but does
not stagnate Crossover point:

if we run longer than 80
steps, green is the
best algorithm

 If we run less than
10 steps, red is the
best algorithm

 Which algorithm is most likely to
solve the problem within 30 steps? blue green red

Comparing runtime distributions
•  Which algorithm has the best median performance?

–  I.e., which algorithm takes the fewest number of steps to be
successful in 50% of the cases?

��	(���������
��.�
)��������#
#�
�
� ��.�
)�
��
�����,������
��

�������
���

 28% solved
after 10 steps,
then stagnate

 57% solved
after 80 steps,
then stagnate

 Slow, but does
not stagnate

blue green red

Comparing runtime distributions
•  Which algorithm has the best 70% quantile performance?

–  I.e., which algorithm takes the fewest number of steps to be
successful in 70% of the cases?

��	(���������
��.�
)��������#
#�
�
� ��.�
)�
��
�����,������
��

�������
���

 28% solved
after 10 steps,
then stagnate

 57% solved
after 80 steps,
then stagnate

 Slow, but does
not stagnate

blue green red

Pro’s and Con’s of SLS
•  Typically no guarantee to find a solution even if one exists

–  Most SLS algorithms can sometimes stagnate
•  Not clear whether problem is infeasible or the algorithm stagnates
•  Very hard to analyze theoretically

–  Some exceptions: guaranteed to find global minimum as time → ∞
•  In particular random sampling and random walk:

strictly positive probability of making N lucky choices in a row

•  Anytime algorithms
–  maintain the node with best h found so far (the �incumbent�)
–  given more time, can improve their incumbent

•  Generality: can optimize arbitrary functions with n inputs
–  Example: constraint optimization
–  Example: RNA secondary structure design

•  Generality: dynamically changing problems
7

SLS generality: Constraint Optimization Problems

•  Constraint Satisfaction Problems
–  Hard constraints: need to satisfy all of them
–  All models are equally good

•  Constraint Optimization Problems
–  Hard constraints: need to satisfy all of them
–  Soft constraints: need to satisfy them as well as possible
–  Can have weighted constraints

•  Minimize h(n) = sum of weights of constraints unsatisfied in n
•  Hard constraints have a very large weight
•  Some soft constraints can be more important than other soft

constraints → larger weight
–  All local search methods we will discuss work just as well for

constraint optimization
•  all they need is an evaluation function h

28

Example for constraint optimization problem

Exam scheduling
–  Hard constraints:

•  Cannot have an exam in too small a room
•  Cannot have multiple exams in the same room in the same time slot
•  …

–  Soft constraints
•  Student should not have to write two exams at the same time

(important)
•  Students should not have multiple exams on the same day
•  It would be nice if students had their exams spread out
•  …

29

SLS generality: optimization of arbitrary functions

•  SLS is even more general
–  SLS’s generality doesn’t stop at constraint optimization
–  We can optimize arbitrary functions f(x1, …, xn) that we can

evaluate for any complete assignment of their n inputs
–  The function’s inputs correspond to our possible worlds,

i.e. to the SLS search states

•  Example: RNA secondary structure design

30

31

Example: SLS for RNA secondary structure design
•  RNA strand made up of four bases: cytosine

(C), guanine (G), adenine (A), and uracil (U)
•  2D/3D structure RNA strand folds into

is important for its function
•  Predicting structure for a

strand is �easy�: O(n3)
•  But what if we want a strand that folds

into a certain structure?
–  Local search over strands

•  Search for one that folds
into the right structure

–  Evaluation function for a strand
•  Run O(n3) prediction algorithm
•  Evaluate how different the result is

from our target structure
•  Only defined implicitly, but can be

evaluated by running the prediction algorithm

RNA strand
GUCCCAUAGGAUGUCCCAUAGGA

Secondary structure

Easy Hard

Best algorithm to date: Local search algorithm RNA-SSD developed at UBC
[Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004]

SLS generality: dynamically changing problems

•  The problem may change over time
–  Particularly important in scheduling
–  E.g., schedule for airline:

•  Thousands of flights and thousands of personnel assignments
•  A storm can render the schedule infeasible

•  Goal: Repair the schedule with minimum number of
changes
–  Often easy for SLS starting from the current schedule
–  Other techniques usually:

•  Require more time
•  Might find solution requiring many more changes

32

Many different types of local search

•  There are many different SLS algorithms
-  Each could easily be a lecture by itself
-  We will only touch on each of them very briefly
-  Only need to know them on a high level

•  For more details, see
-  UBC CS grad course �Empirical Algorithmics� by Holger Hoos
-  Book �Stochastic Local Search: Foundations and Applications”

by Holger Hoos & Thomas Stützle, 2004 (in reading room)

14

Simulated Annealing
•  Annealing: a metallurgical process where metals are

hardened by being slowly cooled so settle into lowest energy
state

•  Analogy:
–  start with a high ‘temperature’: great tendency to take random steps
–  Over time, cool down: only take random steps that are not too bad

•  Details:
–  At node n, select a random neighbour n’
–  If h(n�) < h(n), move to n� (i.e. accept all improving steps)
–  Otherwise, adopt it with a probability depending on

•  How much worse n’ is than n
•  the current temperature T: high T tends to accept even very bad moves
•  Probability of accepting worsening move: exp((h(n) – h(n’))/ T)

–  Temperature reduces over time, according to an annealing schedule
•  “Finding a good annealing schedule is an art”
•  E.g. geometric cooling: every step multiply T by some constant < 1

15

Tabu Search

•  Mark partial assignments as tabu (‘taboo’= forbidden)

–  Prevents repeatedly visiting the same (or similar) local minima

–  Maintain a queue of k variable=value assignments that are tabu

–  E.g., when changing V7�s value from 2 to 4, we cannot change V7
back to 2 for the next k steps

–  k is a parameter that needs to be optimized empirically

16

Iterated Local Search
•  Perform iterative best improvement to get to local minimum
•  Perform perturbation step to get to different parts of the

search space
–  E.g. a series of random steps (random walk)
–  Or a short tabu search

17

Beam Search
•  Keep not just 1 assignment, but k assignments at once

–  A ‘beam’ with k different assignments (k is the ‘beam width’)

•  The neighbourhood is the union of the k neighbourhoods
–  At each step, keep only the k best neighbours
–  Never backtrack

•  When k=1, this is identical to:

–  Single node, always move to best neighbour: greedy descent

•  When k=∞, this is basically:

–  At step m, the beam contains all nodes m steps away from the start node
–  Like breadth first search,

but expanding a whole level of the search tree at once

•  The value of k lets us limit space and parallelism

Greedy descent Best first search Breadth first search

Greedy descent Best first search Breadth first search

18

Stochastic Beam Search
•  Like beam search, but you probabilistically choose the k

nodes at the next step (‘generation’)

•  The probability that neighbour n is chosen depends on h(n)
–  Neighbours with low h(n) are chosen more frequently
–  E.g. rank-based: node n with lowest h(n) has highest probability

•  probability only depends on the order, not the exact differences in h
–  This maintains diversity amongst the nodes

•  Biological metaphor:

–  like asexual reproduction:
each node gives its mutations and the fittest ones survive

19

Genetic Algorithms
•  Like stochastic beam search, but pairs of nodes are

combined to create the offspring

•  For each generation:
–  Choose pairs of nodes n1 and n2 (‘parents’),

where nodes with low h(n) are more likely to be chosen from the
population

–  For each pair (n1, n2), perform a cross-over:
create offspring combining parts of their parents

–  Mutate some values for each offspring
–  Select from previous population and all offspring which nodes to

keep in the population

20

Example for Crossover Operator
•  Given two nodes:

 X1 = a1, X2 = a2, …, Xm = am
 X1 = b1; X2 = b2, …, Xm = bm

•  Select i at random, form two offspring:
 X1 = a1, X2 = a2, …, Xi = ai, Xi+1 = bi+1, …, Xm = bm
 X1 = b1, X2 = b2, …, Xi = bi, Xi+1 = ai+1, …, Xm = am

•  Many different crossover operators are possible

•  Genetic algorithms is a large research field
–  Appealing biological metaphor
–  Several conferences are devoted to the topic

21

Parameters in stochastic local search
•  Simple SLS

–  Neighbourhoods, variable and value selection heuristics,
percentages of random steps, restart probability

•  Tabu Search
–  Tabu length (or interval for randomized tabu length)

•  Iterated Local Search
–  Perturbation types, acceptance criteria

•  Genetic algorithms
–  Population size, mating scheme, cross-over operator, mutation rate

•  Hybridizations of algorithms: many more parameters
23

The Algorithm Configuration Problem
Definition

–  Given:
•  Runnable algorithm A, its parameters and their domains
•  Benchmark set of instances B
•  Performance metric m

–  Find:
•  Parameter setting (‘configuration’) of A optimizing m on B

UBC Ph.D. thesis (Hutter, 2009): “Automated configuration of
algorithms for solving hard computational problems”

Motivation for automated algorithm configuration
Customize versatile algorithms
for different application domains
–  Fully automated

•  Saves valuable human time
•  Can improve performance dramatically 24

Solver
config 1

Solver
config 2

Generality of Algorithm Configuration
Arbitrary problems, e.g.

–  SAT, MIP, Timetabling, Probabilistic Reasoning, Protein
Folding, AI Planning, ….

Arbitrary parameterized algorithms, e.g.
–  Local search

•  Neighbourhoods, restarts, perturbation types, tabu length, etc
–  Genetic algorithms & evolutionary strategies

•  Population size, mating scheme, crossover operators, mutation
rate, hybridizations, etc

–  Systematic tree search
(advanced versions of arc consistency + domain splitting)

•  Branching heuristics, no-good learning, restart strategy, pre-
processing, etc

25

Simple Manual Approach for Configuration

 Start with some configuration
 repeat

 Modify a single parameter
 if results on benchmark set improve then

 keep new configuration
 until no more improvement possible (or “good enough")

 → Manually executed local search

26

The ParamILS Framework
[Hutter, Hoos & Stützle; AAAI '07 & Hutter, Hoos, Leyton-Brown & Stützle; JAIR'09]

 Iterated Local Search in parameter configuration space:

27

Example application for ParamILS:
solver for mixed integer programming (MIP)

IP: NP-hard constraint optimization problem
 MIP = IP with only some integer variables

Commercial state-of-the-art MIP solver IBM ILOG CPLEX:

–  licensed by > 1000 universities and 1300 corporations, including
⅓ of the Global 500

Up to 50-fold speedups just by optimizing the parameters!

Supply chain
management

software:
Oracle, SAP, …

Transportation/Logistics:
SNCF, United Airlines,
UPS, United States
Postal Service, …

Production planning
and optimization:

Airbus, Dell, Porsche,
Thyssen Krupp,

Toyota, Nissan, …

