Local Search for CSPs

Alan Mackworth

UBC CS 322-CSP 5
February 4, 2013

Textbook §4.8

Local Search: Motivation

« Solving CSPs is NP-hard
- Search space for many CSPs is huge
- Exponential in the number of variables
- Even arc consistency with domain splitting is often not enough

« Alternative: local search
— Often finds a solution quickly
— But cannot prove that there is no solution

« Useful method in practice

— Best available method for many constraint satisfaction and
constraint optimization problems

— Extremely general!
— Works for problems other than CSPs
— E.g. arc consistency only works for CSPs

Some Successful Application Areas for Local Search

- :"\

Q

a
2y -
- A N
\(Iioi ()™ (om)) N
o001 oon s) .
= N vy ~ ! P
(o) \ () (rc02) x> <
/L/\ N /7‘)\ o~ ! —:,_tv.{f = a X
TPR SO2. RCO2 NES 75K -)
7/\ —_— \/)\ / (\///J s e <
N T N - H
(e) (e} (o) N T 7~
PN v 1T 1
T AN RN AN AL |
[GE4) 1) (ariv HA) ErcA)
)))y el e
\ b T k3
o N ey <,
&))T () b)
<
—~— N
)

Probabilistic

Reasoning RNA struct Propositional
NAstrueture - isfiability (SAT)
design

.
Scheduling of Hubble
Space Telescope:

. . 1 week — 10 seconds
Protein Folding 12

University Timetabling

Local Search

|dea:

— Consider the space of complete assignments of values to variables
(all possible worlds)

— Neighbours of a current node are similar variable assignments

— Move from one node to another according to a function that scores
how good each assignment is

1 81|48 3|4335 2/ 81|48 3|435
79 36 2 8|1 47 79 3|16 2 8|1 4 7
4 6 571 2|8 56 46 571 218 56
3/3 713 141193 313 713 141193
85§78 22|97 8| 3 8|15(7 |8]2|2] 9|78
5(4(4 | 3(71817(6]2 5(4(4]| 3(71817(6]2
4 8 7]128|536 48 7|1 28536
1[1(7]1519|3]|4(2|3 111[715(9(3]4(2|3
7 58|4 86|7 35 715814 8l6|7]|3]|5

13

Local Search Problem: Definition

Definition: A local search problem consists of a:

CSP: a set of variables, domains for these variables, and
constraints on their joint values. A node in the search space will
be a complete assignment to all of the variables.

Neighbour relation: an edge in the search space will exist
when the neighbour relation holds between a pair of nodes.

Scoring function: h(n), judges cost of a node (want to minimize)

- E.g. the number of constraints violated in node n.
- E.g. the cost of a state in an optimization context.

14

Example: Sudoku as a local search problem
CSP: usual Sudoku CSP

- One variable per cell; domains {1,...,9};

- Constraints:
each number occurs once per row, per column, and per 3x3 box

Neighbour relation: value of a single cell differs
Scoring function: number of constraint violations

1 8 1|48 3|435 2 81|48 3|43 5
79 3(6 2 8|1 4 7 79 3(6 2 8|1 4 7
46 5|71 2|8 56 46 5|71 2|8 56
3373141193 33713 14|19 3
865718 2297 8| —» 8 5718 22|97 8
5414|3787 (6]2 544|137 8|7 62
4 87|128]|536 4 87128536
111/7]15(9/3|4(2|3 111(7]15({9/3|4(2|3
7(5(814) 816|735 7(5(8 14| 8l6]|7]|3]5

Search Space for Local Search

@2 == Vl 9eey Vn = V]

~ »
—p

Only the current node is kept in memory at each step.
Very different from the systematic tree search approaches we have
seen so far! Local search does NOT backtrack!

Iterative Best Improvement

How to determine the neighbor node to be selected?

Iterative Best Improvement:
— select the neighbor that optimizes some evaluation function

Which strategy would make sense? Select neighbour with ...

Maximal number of constraint violations

Similar number of constraint violations as current state
No constraint violations

Minimal number of constraint violations

Evaluation function:
h(n): number of constraint violations in state n

Greedy descent: evaluate h(n) for each neighbour, pick the neighbour n
with minimal h(n)

Hill climbing: equivalent algorithm for maximization problems

— Minimizing h(n) is identical to maximizing —h(n)

Example: Greedy descent for Sudoku

Assign random numbers
between 1 and 9 to blank
fields

Repeat

— For each cell & each number:
Evaluate how many constraint
violations changing the
assignment would yield

— Choose the cell and number
that leads to the fewest
violated constraints; change it

Until solved

~

OO wr

\]\Ob—‘

N = OIS O WO ©O
e N N e N A% B M
NS) JIERE FUCRRE © « BIVSH N Bi'e) I N
o OR[N =T N
O\(A)OOOON.[;N@L»
W N WO OO . &b w
W 00 O\ [N o0 Wy O W

J —~ Bl o0 WIS I

< B,

19

Example: Greedy descent for Sudoku

Example for one local search step:

Reduces #constraint violations by 3:

- Two 1s in the first column

- Two 1s in the first row
- Two 1s in the top-left box

Wi >~ O|lon o0 Al \ O o0 wn
Wl ~ oo o o
Y=ol || =~
N O NN 0]l ™M o
o N |+ ~lao ®
O ~|n 0O T WO <
—_ M nlo~ |
o ®©|mw o~ n

General Local Search Algorithm

1: Procedure Local-Search(V,dom,C)

2 Inputs

3 V: a set of variables

4: dom: a function such that dom(X) is the domain of variable X
5: C: set of constraints to be satisfied

6: Output complete assignment that satisfies the constraints

7 Local

8

A[V] an array of values indexed by V

9: repeat Random
10: for each variable X do initialization

11: A[X] «—a random value in dom(X);

12:

13: while (stopping criterion not met & A is not a satisfying assignment)
14: Select a variable Y and a value V €dom(Y)

15: Set A[Y] <V

16: Local search
17: if (A 1s a satisfying assignment) then step

18: return A

19:

20: until termination

I:
2
3
4:
5:
6.
7
3

9:

10:
11:

General Local Search Algorithm

Procedure Local-Search(V,dom,C)
Inputs
V: a set of variables
dom: a function such that dom(X) is the domain of variable X
C: set of constraints to be satisfied
Output complete assignment that satisfies the constraints
Local

A[V] an array of values indexed by V
repeat

for each variable X do
A[X] «—a random value in dom(X);

12:

13:
14:
15:
16:
17:
18:
19:
20:

while (stopping criterion not met & A is not a satisfying assignment)
Select a variable Y and a value V €dom(Y)

Set A[Y] <V x

Based on local information.
E.g., for each neighbour evaluate
return A how many constraints are unsatisfied.

if (A 1s a satisfying assignment) then

Greedy descent: select Y and V to minimize

until termination #unsatisfied constraints at each step

Another example: N-Queens

 Put n queens on an n x n board with no two queens
on the same row, column, or diagonal (i.e attacking

each other)

« Positions a queen
can attack

/

AN

/

N

N

.

Example: N-queens

Example: 4-Queens

States: 4 queens in 4 columns (4* = 256 states)
Operators: move queen in column

Goal test: no attacks

Evaluation: /i(n) = number of attacks

\ s

=

Example: N-Queens
&=

18 |[i8l| 14 13 |8l | 14 5 StepS

16 15 . 14 - 16
14 18 15 . 14

14 17.14.18
h=17

Each cell lists h (i.e. #constraints unsatisfied) if you move
the queen from that column into the cell

 \Which move should we

» Locally optimal solution

The problem of local minima

pick in this situation?
- Current cost: h=1

- No single move can
improve on this

- In fact, every single move
only makes things worse
(h = 2)

— Since we are minimizing:
local minimum

26

Local minima

Evaluation function
A

\ / 7,
\?e S/pf/(l ariable)

Local minima

« Most research in local search concerns effective
mechanisms for escaping from local minima

« Want to quickly explore many local minima:
global minimum is a local minimum, too

27

Different neighbourhoods

« Local minima are defined with respect to a neighbourhood.

* Neighbourhood: states resulting from some small
iIncremental change to current variable assignment

* 1-exchange neighbourhood

— One stage selection: all assignments that differ in exactly one
variable.

How many of those are there for N variables and domain size d?
O(Nd) O@@N) O(N9) O(N+d)
— O(dN). N variables, for each of them need to check d-1 values

— Two stage selection: first choose a variable (e.g. the one in the
most conflicts), then best value

« Lower computational complexity: O(N+d). But less progress per step
« 2-exchange neighbourhood

— All variable assignments that differ in exactly two variables. O(N2d?)

— More powerful: local optimum for 1-exchange neighbourhood might,
not be local optimum for 2-exchange neighbourhood

Different neighbourhoods

 How about an 8-exchange
neighbourhood?

- All minima with respect to
the 8-exchange
neighbourhood are global
minima

- Why?

- How expensive is the 8-

exchange neighbourhood?
- O(N&d?®)

- In general, N-exchange

neighbourhood includes

all solutions

- Where N is the number of
variables

- But is exponentially large

29

Stochastic Local Search

« We will use greedy steps to find local minima
— Move to neighbour with best evaluation function value

 We will use randomness to avoid getting trapped in local
minima

31

General Local Search Algorithm

Procedure Local-Search(V,dom,C)
Inputs

V: a set of variables
dom: a function such that dom(X) is the domain of variable X

Output complete assignment that satisfies the constraints
Local

I:
2
3
4
5: C: set of constraints to be satisfied
6
7
8

A[V] an array of values indexed by V

' Extreme case 1:
9: repeat

random sampling.

10: for each variable X do
, Restart at every step:
11| Random % A[X] «—a random value in dom(X); Stopping criterion is “true”

12:| restart

13: while (stopping criterion not met & A is not a satisfying assignment)
14: Select a variable Y and a value V €dom(Y)

15: Set A[Y] <V

16:

17: if (A is a satisfying assignment) then

18: return A

19:

20: until termination

General Local Search Algorithm

1: Procedure Local-Search(V,dom,C)

2 Inputs

3 V: a set of variables

4. dom: a function such that dom(X) is the domain of variable X

5: C: set of constraints to be satisfied

6: Output complete assignment that satisfies the constraints

/ Local Extreme case 2: greedy descent
8: A[V] an array of values indexed by V Only restart in local minima:

9 repeat _ Stopping criterion is “no more
10: for each variable X do improvement in eval. function h”
1 A[X] «a random value in dom(X);| Sglect variable/value greedily.
12: —

13: while (stopping criterion not met & A is not a satisfying assignment)

14: Select a variable Y and a value V €dom(Y)

15: Set A[Y] <V

16:

17: if (A is a satisfying assignment) then

18: return A

19:

20: until termination

Greedy descent vs. Random sampling

« Greedy descent is
— good for finding local minima
— bad for exploring new parts of the search space

 Random sampling is
— good for exploring new parts of the search space
— bad for finding local minima

* A mix of the two can work very well

11

Greedy Descent + Randomness

Greedy steps

— Move to neighbour with best evaluation function value

Next to greedy steps, we can allow for:

1. Random restart:
reassign random values to all variables (i.e. start fresh)

2. Random steps:
move to a random neighbour

Only doing random steps (no greedy steps at all)
is called “random walk”

12

Which randomized method would work best in each of
the these two search spaces?

Evaluation function Evaluation function
A A A B
> >
State Space (1 variable) State Space
(1 variable)

Greedy descent with random steps best on A
Greedy descent with random restart best on B

Greedy descent with random steps best on B
Greedy descent with random restart best on A

Which randomized method would work best in each of
the these two search spaces?

Evaluation function Evaluation function
A A A B
\/\\1\\&\\ HJJ[N
> \A’“ﬂﬂ >
State Space (1 variable) State Space

(1 variable)
Greedy descent with random steps best on B

Greedy descent with random restart best on A

« But these examples are simplified extreme cases for illustration
- in practice, you don’t know what your search space looks like

« Usually integrating both kinds of randomization works best

Stochastic Local Search for CSPs

Start node: random assignment
Goal: assignment with zero unsatisfied constraints

Heuristic function h: number of unsatisfied constraints
— Lower values of the function are better

Stochastic local search is a mix of:

— Greedy descent: move to neighbor with lowest h

— Random walk: take some random steps

— Random restart: reassigning values to all variables

Stochastic Local Search for CSPs

* More examples of ways to add randomness to local search
fora CSP

* In one stage selection of variable and value:
— instead choose a random variable-value pair

* |In two stage selection (first select variable V, then new value for V):

— Selecting variables:

« Sometimes choose the variable which participates in the largest
number of conflicts

« Sometimes choose a random variable that participates in some conflict
« Sometimes choose a random variable

— Selecting values

« Sometimes choose the best value for the chosen variable: the one
yielding minimal h(n)

« Sometimes choose a random value for the chosen variable 16

Greedy Descent with Min-Conflict Heuristic

One of the best SLS techniques for CSP solving:

— At random, select one of the variables v that participates in a
violated constraint

— Set v to one of the values that minimizes the number of unsatisfied
constraints

Can be implemented efficiently:
— Data structure 1 stores currently violated constraints

— Data structure 2 stores variables that are involved in violated
constraints

— Each step only yields incremental changes to these data structures

Most SLS algorithms can be implemented similarly

efficiently — very small complexity per search step -

Evaluating SLS algorithms

« SLS algorithms are randomized
— The time taken until they solve a problem is a random variable

— It is entirely normal to have runtime variations of 2 orders of
magnitude in repeated runs!

 E.g. 0.1 seconds in one run, 10 seconds in the next one
* On the same problem instance (only difference: random seed)
« Sometimes SLS algorithm doesn’t even terminate at all: stagnation

« If an SLS algorithm sometimes stagnates, what is its mean
runtime (across many runs)?
— Infinity!
— In practice, one often counts timeouts as some fixed large value X
« But results depend on which X is chosen

19

run-time [CPU sec]

Comparing SLS algorithms

* A better way to evaluate empirical performance

Runtime distributions
» Perform many runs (e.g. below: 1000 runs)

» Consider the empirical distribution of the runtimes

— Sort the empirical runtimes

(decreasing)

N - -
o N EEN
| |

o N B~ OO ©

0 100 200 300 400 500 600 700 800 900 1000

run #

(anj0s)d

10 12 14 16 18 20

8

6

run-time [CPU sec]

run-time [CPU sec]

Comparing SLS algorithms

* A better way to evaluate empirical performance

— Runtime distributions
» Perform many runs (e.g. below: 1000 runs)

» Consider the empirical distribution of the runtimes
— Sort the empirical runtimes (decreasing)
— Rotate graph 90 degrees. E.g. below: longest run took 12 seconds

14 T 1 | | | |]] T | , , |
12 | —
10 F -
5 r . 2
O
6 0,
o
4
2 |
0 0 | I | | I I | | |
0 100 200 300 400 500 600 700 800 900 1000 0O 2 4 6 8 10 12 14 16 18

run # run-time [CPU sec] 21

Comparing runtime distributions

X axis: runtime (or number of steps)
y axis: proportion (or number) of runs solved in that runtime
— Typically use a log scale on the x axis

1 S— — - Slow, but does

Fraction of o.al Crossover point: | not stagnate
solved runs, i.e. if we run longer than 80
0.8 steps, green is the
0.7} best algorithm
P(solvedby 9 \ o o
this time l . o Solve
) ol If we run less than | after 80 steps,

10 steps, red is the
“rbest algorith
0.3} m\\

0.2} /

1 N A ' 11111110 ' A A 111111100 ' 1 1 111110100
of steps

|then stagnate

A————————————— .} < 17/ Yo | \V/=Ye
1after 10 steps,
1then stagnate

Which algorithm is most likely to
solve the problem within 30 steps? [BIU€ red green

Comparing runtime distributions

« Which algorithm has the best median performance?

— l.e., which algorithm takes the fewest number of steps to be
successful in 50% of the cases?

- red green
1 ———

Fraction of

X1
solved runs, i.e. 08l
P(solved by [
this time) >
0.5}

0.4+
0.3t
0.2}
0Af

- Slow, but does
| not stagnate

1 57% solved
1 after 80 steps,
|then stagnate

1 28% solved
1after 10 steps,
{then stagnate

~ 1000

of steps

Comparing runtime distributions

« Which algorithm has the best 70% quantile performance?

— l.e., which algorithm takes the fewest number of steps to be
successful in 70% of the cases?

- red green
1 ———

Fraction of

X1
solved runs, i.e. 08l
P(solved by [
this time) >
0.5}

0.4+
0.3t
0.2}
0Af

- Slow, but does
| not stagnate

1 57% solved
1 after 80 steps,
|then stagnate

1 28% solved
1after 10 steps,
{then stagnate

~ 1000

of steps

Pro’'s and Con’s of SLS

Typically no guarantee to find a solution even if one exists

— Most SLS algorithms can sometimes stagnate
» Not clear whether problem is infeasible or the algorithm stagnates
* Very hard to analyze theoretically

— Some exceptions: guaranteed to find global minimum as time — «

* In particular random sampling and random walk:
strictly positive probability of making N lucky choices in a row

Anytime algorithms
— maintain the node with best h found so far (the “incumbent”)
— given more time, can improve their incumbent

Generality: can optimize arbitrary functions with n inputs
— Example: constraint optimization
— Example: RNA secondary structure design

Generality: dynamically changing problems

SLS generality: Constraint Optimization Problems

« Constraint Satisfaction Problems
— Hard constraints: need to satisfy all of them
— All models are equally good

» Constraint Optimization Problems
— Hard constraints: need to satisfy all of them
— Soft constraints: need to satisfy them as well as possible
— Can have weighted constraints
* Minimize h(n) = sum of weights of constraints unsatisfied in n

« Hard constraints have a very large weight

« Some soft constraints can be more important than other soft
constraints — larger weight

— All local search methods we will discuss work just as well for
constraint optimization

« all they need is an evaluation function h

28

Example for constraint optimization problem

Exam scheduling

— Hard constraints:
« Cannot have an exam in too small a room
« Cannot have multiple exams in the same room in the same time slot

— Soft constraints

« Student should not have to write two exams at the same time
(important)

« Students should not have multiple exams on the same day

* |t would be nice if students had their exams spread out

29

SLS generality: optimization of arbitrary functions

SLS is even more general
— SLS’s generality doesn'’t stop at constraint optimization

— We can optimize arbitrary functions f(x, ..., X,,) that we can
evaluate for any complete assignment of their n inputs

— The function’s inputs correspond to our possible worlds,
i.e. to the SLS search states

Example: RNA secondary structure design

30

Example: SLS for RNA secondary structure design

RNA strand made up of four bases: cytosine
(C), guanine (G), adenine (A), and uracil (U)

2D/3D structure RNA strand folds into

is important for its function
Predicting structure for a

RNA strand
GUCCCAUAGGAUGUCCCAUAGGA

strand is “easy”: O(n3)
But what if we want a strand that folds T
into a certain structure? Hard

— Local search over strands

— Evaluation function for a strand

Search for one that folds SGCOHdal‘y structure
into the right structure Hairpin oop

Multibranched loop

Run O(n3) prediction algorithm

Evaluate how different the result is
from our target structure

Only defined implicitly, but can be
evaluated by running the prediction algorithm

Stacked pairs

Internal loop
External base

Best algorithm to date: Local search algorithm RNA-SSD developed at UBC
[Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004] ,,

SLS generality: dynamically changing problems

« The problem may change over time
— Particularly important in scheduling

— E.g., schedule for airline:
« Thousands of flights and thousands of personnel assignments
« A storm can render the schedule infeasible

» (Goal: Repair the schedule with minimum number of
changes
— Often easy for SLS starting from the current schedule

— Other techniques usually:
* Require more time
« Might find solution requiring many more changes

32

Many different types of local search

* There are many different SLS algorithms
- Each could easily be a lecture by itself

- We will only touch on each of them very briefly
- Only need to know them on a high level

 For more details, see

- UBC CS grad course “Empirical Algorithmics” by Holger Hoos

- Book “Stochastic Local Search: Foundations and Applications”
by Holger Hoos & Thomas Stutzle, 2004 (in reading room)

14

Simulated Annealing

Annealing: a metallurgical process where metals are
hardened by being slowly cooled so settle into lowest energy
state

Analogy:

— start with a high ‘temperature’: great tendency to take random steps
— Over time, cool down: only take random steps that are not too bad

Details:

— At node n, select a random neighbour n’

— If h(n") < h(n), move ton’ (i.e. accept all improving steps)

— Otherwise, adopt it with a probability depending on
 How much worse n’ is than n
» the current temperature T: high T tends to accept even very bad moves
» Probability of accepting worsening move: exp((h(n) —h(n’))/ T)

— Temperature reduces over time, according to an annealing schedule
* “Finding a good annealing schedule is an art”

15
* E.g. geometric cooling: every step multiply T by some constant < 1

Tabu Search

« Mark partial assignments as tabu (‘taboo’= forbidden)

— Prevents repeatedly visiting the same (or similar) local minima
— Maintain a queue of k variable=value assignments that are tabu

— E.g., when changing V' s value from 2 to 4, we cannot change V,
back to 2 for the next k steps

— k is a parameter that needs to be optimized empirically

16

lterated Local Search

« Perform iterative best improvement to get to local minimum

« Perform perturbation step to get to different parts of the
search space

— E.g. a series of random steps (random walk)

— Or a short tabu search
i

perturbation

CcoSt

solution space S 17

Beam Search

» Keep not just 1 assignment, but k assignments at once
— A ‘beam’ with k different assignments (k is the ‘beam width’)

* The neighbourhood is the union of the k neighbourhoods
— At each step, keep only the k best neighbours
— Never backtrack

« When k=1, this is identical to:

Greedy descent Breadth first search Best first search

— Single node, always move to best neighbour: greedy descent

 When k=, this is basically:
Greedy descent Breadth first search Best first search

— At step m, the beam contains all nodes m steps away from the start node

— Like breadth first search,
but expanding a whole level of the search tree at once

* The value of k lets us limit space and parallelism 18

Stochastic Beam Search

Like beam search, but you probabilistically choose the k
nodes at the next step (‘generation’)

The probability that neighbour n is chosen depends on h(n)
— Neighbours with low h(n) are chosen more frequently

— E.g. rank-based: node n with lowest h(n) has highest probability
« probability only depends on the order, not the exact differences in h

— This maintains diversity amongst the nodes

Biological metaphor:

— like asexual reproduction:
each node gives its mutations and the fittest ones survive

19

Genetic Algorithms

» Like stochastic beam search, but pairs of nodes are
combined to create the offspring

* For each generation:

— Choose pairs of nodes n, and n, (‘parents’),
where nodes with low h(n) are more likely to be chosen from the
population

— For each pair (n,, n,), perform a cross-over:
create offspring combining parts of their parents

— Mutate some values for each offspring

— Select from previous population and all offspring which nodes to
keep in the population

20

Example for Crossover Operator

Given two nodes:
Xi=a, X,=2a,, ..., X, =a,
X,=by; X,=b,, ..., X =b_

Select i at random, form two offspring:
X1 - a1, X2 - a2, ey XI - al, X|+1 - bi+1, "

L, X =b_
o Xy =an
Many different crossover operators are possible

Genetic algorithms is a large research field
— Appealing biological metaphor
— Several conferences are devoted to the topic

21

Parameters in stochastic local search
Simple SLS

— Neighbourhoods, variable and value selection heuristics,
percentages of random steps, restart probability

Tabu Search

— Tabu length (or interval for randomized tabu length)

Iterated Local Search
— Perturbation types, acceptance criteria

Genetic algorithms
— Population size, mating scheme, cross-over operator, mutation rate

Hybridizations of algorithms: many more parameters
23

The Algorithm Configuration Problem

Definition
— Given:
* Runnable algorithm A, its parameters and their domains
« Benchmark set of instances B
* Performance metric m

— Find:
» Parameter setting (‘configuration’) of A optimizing m on B

UBC Ph.D. thesis (Hutter, 2009): “Automated configuration of
algorithms for solving hard computational problems”

Customize versatile algorithms
for different application domains

— Fully automated (e
« Saves valuable human time Solver Solver
. Can improve performance dramatically ~ ONfig 1 config 2 »4

Generality of Algorithm Configuration

Arbitrary problems, e.q.

— SAT, MIP, Timetabling, Probabilistic Reasoning, Protein
Folding, Al Planning,

Arbitrary parameterized algorithms, e.g.
— Local search
* Neighbourhoods, restarts, perturbation types, tabu length, etc

— Genetic algorithms & evolutionary strategies

« Population size, mating scheme, crossover operators, mutation
rate, hybridizations, etc

— Systematic tree search
(advanced versions of arc consistency + domain splitting)

« Branching heuristics, no-good learning, restart strategy, pre-
processing, etc

25

Simple Manual Approach for Configuration

Start with some configuration

repeat
Modify a single parameter
if results on benchmark set improve then

L keep new configuration
until no more improvement possible (or “good enough”)

— Manually executed local search

26

The ParamILS Framework

[Hutter, Hoos & Stutzle; AAAI '07 & Hutter, Hoos, Leyton-Brown & Stutzle; JAIR'09]

lterated Local Search in parameter configuration space:
A

perturbation

cost

S*

solution space S

27

Example application for ParamlLS:
solver for mixed integer programming (MIP)

IP: NP-hard constraint optimization problem

;
mlil Zx -, MIP = IP with only some integer variables
S. L T >

x; € Zfor1el
Commercial state-of-the-art MIP solver IBM ILOG CPLEX:

— licensed by > 1000 universities and 1300 corporations, including
Y5 of the Global 500

L
Transportation/Logistics: Supply chain Production planning
SNCF, United Airlines, management and optimization:
UPS, United States software: Airbus, Dell, Porsche,
Postal Service, ... Oracle, SAP, ... Thyssen Krupp,

Toyota, Nissan, ...
Up to 50-fold speedups just by optimizing the parameters!

