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•   Solving CSPs is NP-hard 
-  Search space for many CSPs is huge 
-  Exponential in the number of variables 
-  Even arc consistency with domain splitting is often not enough 

•   Alternative: local search 
–  Often finds a solution quickly 
–  But cannot prove that there is no solution 

•   Useful method in practice 
–  Best available method for many constraint satisfaction and 

constraint optimization problems 
–  Extremely general!  

–  Works for problems other than CSPs  
–  E.g. arc consistency only works for CSPs 

Local Search: Motivation 



Some Successful Application Areas for Local Search 
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Probabilistic  
Reasoning 

      Protein Folding 

Propositional 
satisfiability (SAT) 

University Timetabling 

RNA structure 
design 

Scheduling of  Hubble 
Space Telescope: 
1 week → 10 seconds 



Local Search 
•   Idea:  

–  Consider the space of complete assignments of values to variables 
(all possible worlds) 

–  Neighbours of a current node are similar variable assignments  
–  Move from one node to another according to a function that scores 

how good each assignment is 
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Local Search Problem: Definition 
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Definition: A local search problem consists of a: 
 

CSP: a set of variables, domains for these variables, and 
constraints on their joint values. A node in the search space will 
be a complete assignment to all of the variables. 
 
Neighbour relation: an edge in the search space will exist 
when the neighbour relation holds between a pair of nodes. 
 
Scoring function: h(n), judges cost of a node (want to minimize)  
   -   E.g. the number of constraints violated in node n.  
   -   E.g. the cost of a state in an optimization context. 
 



Example: Sudoku as a local search problem 
CSP: usual Sudoku CSP 

-  One variable per cell; domains {1,…,9};  
-  Constraints:  

each number occurs once per row, per column, and per 3x3 box 
Neighbour relation: value of a single cell differs 
Scoring function: number of constraint violations 
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V1 = v1 ,V2 = v1 ,.., Vn = v1 

Search Space for Local Search 

V1 = v2 ,V2 = v1 ,.., Vn = v1 

V1 = v4 ,V2 = v1 ,.., Vn = v1 

V1 = v1 ,V2 = vn ,.., Vn = v1 

V1 = v4 ,V2 = v2 ,.., Vn = v1 

V1 = v4 ,V2 = v3 ,.., Vn = v1 

V1 = v4 ,V2 = v1 ,.., Vn = v2 

Only the current node is kept in memory at each step.  
Very different from the systematic tree search approaches we have 
seen so far! Local search does NOT backtrack! 



Iterative Best Improvement 
•  How to determine the neighbor node to be selected? 
•  Iterative Best Improvement:  

–  select the neighbor that optimizes some evaluation function 
•  Which strategy would make sense? Select neighbour with … 

•  Evaluation function:  
h(n): number of constraint violations in state n 

•  Greedy descent: evaluate h(n) for each neighbour, pick the neighbour n 
with minimal h(n) 

•  Hill climbing: equivalent algorithm for maximization problems 
–  Minimizing h(n) is identical to maximizing –h(n) 

Minimal number of constraint violations 

Similar number of constraint violations as current state 
Maximal number of constraint violations 

No constraint violations 
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Example: Greedy descent for Sudoku 
Assign random numbers 

between 1 and 9 to blank 
fields 

Repeat 
–  For each cell & each number: 

Evaluate how many constraint 
violations changing the 
assignment would yield 

–  Choose the cell and number 
that leads to the fewest 
violated constraints; change it 

Until solved 
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Example: Greedy descent for Sudoku 
Example for one local search step: 
Reduces #constraint violations by 3: 

-  Two 1s in the first column 
-  Two 1s in the first row 
-  Two 1s in the top-left box 
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General Local Search Algorithm 

Random 
initialization 

Local search 
step 

1: Procedure Local-Search(V,dom,C)  
2:           Inputs 
3:                     V: a set of variables  
4:                     dom: a function such that dom(X) is the domain of variable X  
5:                     C: set of constraints to be satisfied  
6:           Output     complete assignment that satisfies the constraints  
7:           Local 
8:                     A[V] an array of values indexed by V  
9:           repeat 
10:                     for each variable X do  
11:                               A[X] ←a random value in dom(X);  
12:                      
13:                     while (stopping criterion not met & A is not a satisfying assignment)  
14:                               Select a variable Y and a value V �dom(Y)  
15:                               Set A[Y] ←V  
16:                      
17:                     if (A is a satisfying assignment) then  
18:                               return A  
19:                      
20:           until termination 



General Local Search Algorithm 

Based on local information. 
E.g., for each neighbour evaluate  
how many  constraints are unsatisfied. 
 
Greedy descent: select Y and V to minimize 
#unsatisfied constraints at each step 

1: Procedure Local-Search(V,dom,C)  
2:           Inputs 
3:                     V: a set of variables  
4:                     dom: a function such that dom(X) is the domain of variable X  
5:                     C: set of constraints to be satisfied  
6:           Output     complete assignment that satisfies the constraints  
7:           Local 
8:                     A[V] an array of values indexed by V  
9:           repeat 
10:                     for each variable X do  
11:                               A[X] ←a random value in dom(X);  
12:                      
13:                     while (stopping criterion not met & A is not a satisfying assignment)  
14:                               Select a variable Y and a value V �dom(Y)  
15:                               Set A[Y] ←V  
16:                      
17:                     if (A is a satisfying assignment) then  
18:                               return A  
19:                      
20:           until termination 



Another example: N-Queens 
•  Put n queens on an n × n board with no two queens 

on the same row, column, or diagonal (i.e attacking 
each other) 

•  Positions a queen 
can attack 



Example: N-queens 

h = 5 h = ? h = ? 
3 1 0 2 



 Example: N-Queens 

h = 17 h = 1 

5 steps 

Each cell lists h (i.e. #constraints unsatisfied) if you move 
the queen from that column into the cell 



The problem of local minima 

•  Which move should we 
pick in this situation? 
-  Current cost: h=1 
-  No single move can 

improve on this 
-  In fact, every single move 

only makes things worse  
(h ≥ 2) 

•  Locally optimal solution 
–  Since we are minimizing: 

local minimum 

26 



Local minima 

 
                                    Local minima 

•  Most research in local search concerns effective 
mechanisms for escaping from local minima 

•  Want to quickly explore many local minima:  
global minimum is a local minimum, too 

27 

Evaluation function 

State Space (1 variable) 

Evaluation function 

State Space  
(1 variable) 

B 



Different neighbourhoods 
•  Local minima are defined with respect to a neighbourhood. 
•  Neighbourhood: states resulting from some small 

incremental change to current variable assignment 
•  1-exchange neighbourhood 

–  One stage selection: all assignments that differ in exactly one 
variable.  
How many of those are there for N variables and domain size d? 

–  O(dN). N variables, for each of them need to check d-1 values 

–  Two stage selection: first choose a variable (e.g. the one in the 
most conflicts), then best value 

•  Lower computational complexity: O(N+d). But less progress per step 

•  2-exchange neighbourhood 
–  All variable assignments that differ in exactly two variables. O(N2d2) 
–  More powerful: local optimum for 1-exchange neighbourhood might 

not be local optimum for 2-exchange neighbourhood 
28 

O(N+d) O(Nd) O(dN) O(Nd) 



Different neighbourhoods 
•  How about an 8-exchange 

neighbourhood? 
-  All minima with respect to 

the 8-exchange 
neighbourhood are global 
minima 

-  Why? 
-  How expensive is the 8-

exchange neighbourhood? 
-  O(N8d8) 

-  In general, N-exchange 
neighbourhood includes 
all solutions  
-  Where N is the number of 

variables 
-  But is exponentially large 

 
29 



Stochastic Local Search 

•  We will use greedy steps to find local minima 
–  Move to neighbour with best evaluation function value 

•  We will use randomness to avoid getting trapped in local 
minima 

31 



General Local Search Algorithm 

Extreme case 1:  
random sampling. 
Restart at every step:  
Stopping criterion is �true� 

Random 
restart 

1: Procedure Local-Search(V,dom,C)  
2:           Inputs 
3:                     V: a set of variables  
4:                     dom: a function such that dom(X) is the domain of variable X  
5:                     C: set of constraints to be satisfied  
6:           Output     complete assignment that satisfies the constraints  
7:           Local 
8:                     A[V] an array of values indexed by V  
9:           repeat 
10:                     for each variable X do  
11:                               A[X] ←a random value in dom(X);  
12:                      
13:                     while (stopping criterion not met & A is not a satisfying assignment)  
14:                               Select a variable Y and a value V �dom(Y)  
15:                               Set A[Y] ←V  
16:                      
17:                     if (A is a satisfying assignment) then  
18:                               return A  
19:                      
20:           until termination 



General Local Search Algorithm 

Extreme case 2: greedy descent 
Only restart in local minima: 
Stopping criterion is �no more 
improvement in eval. function h� 
Select variable/value greedily. 

1: Procedure Local-Search(V,dom,C)  
2:           Inputs 
3:                     V: a set of variables  
4:                     dom: a function such that dom(X) is the domain of variable X  
5:                     C: set of constraints to be satisfied  
6:           Output     complete assignment that satisfies the constraints  
7:           Local 
8:                     A[V] an array of values indexed by V  
9:           repeat 
10:                     for each variable X do  
11:                               A[X] ←a random value in dom(X);  
12:                      
13:                     while (stopping criterion not met & A is not a satisfying assignment)  
14:                               Select a variable Y and a value V �dom(Y)  
15:                               Set A[Y] ←V  
16:                      
17:                     if (A is a satisfying assignment) then  
18:                               return A  
19:                      
20:           until termination 



Greedy descent vs. Random sampling  

•  Greedy descent is  
–  good for finding local minima 
–  bad for exploring new parts of the search space 
 

•  Random sampling is  
–  good for exploring new parts of the search space 
–  bad for finding local minima 

•  A mix of the two can work very well 

11 



Greedy Descent + Randomness 

•  Greedy steps 
–  Move to neighbour with best evaluation function value 

•  Next to greedy steps, we can allow for:  
1. Random restart:  

reassign random values to all variables (i.e. start fresh) 

2. Random steps:  
move to a random neighbour 

•  Only doing random steps (no greedy steps at all) 
is called �random walk� 

12 



 
Which randomized method would work best in each of 

the these two search spaces?  

Greedy descent with random steps best on A 
Greedy descent with random restart best on B 
 Greedy descent with random steps best on B 
Greedy descent with random restart best on A 
 equivalent 

Evaluation function 

State Space (1 variable) 

Evaluation function 

State Space  
(1 variable) 

A B 



•  But these examples are simplified extreme cases for illustration 
-  in practice, you don’t know what your search space looks like 

•  Usually integrating both kinds of randomization works best  

 

Greedy descent with random steps best on B 
Greedy descent with random restart best on A 
 

Evaluation function 

State Space (1 variable) 

Evaluation function 

State Space  
(1 variable) 

A B 

 
Which randomized method would work best in each of 

the these two search spaces?  



•  Start node: random assignment 

•  Goal: assignment with zero unsatisfied constraints 

•  Heuristic function h: number of unsatisfied constraints 
–  Lower values of the function are better 

 
•  Stochastic local search is a mix of:  

–  Greedy descent: move to neighbor with lowest h 
–  Random walk: take some random steps  
–  Random restart: reassigning values to all variables  

Stochastic Local Search for CSPs 



Stochastic Local Search for CSPs 
•  More examples of ways to add randomness to local search 

for a CSP 

•  In one stage selection of variable and value: 
–  instead choose a random variable-value pair 

•  In two stage selection (first select variable V, then new value for V): 
–  Selecting variables: 

•  Sometimes choose the variable which participates in the largest 
number of conflicts 

•  Sometimes choose a random variable that participates in some conflict 
•  Sometimes choose a random variable 

–  Selecting values 

•  Sometimes choose the best value for the chosen variable: the one 
yielding minimal h(n) 

•  Sometimes choose a random value for the chosen variable 16 



Greedy Descent with Min-Conflict Heuristic 

•  One of the best SLS techniques for CSP solving: 
–  At random, select one of the variables v that participates in a 

violated constraint 
–  Set v to one of the values that minimizes the number of unsatisfied 

constraints 

•  Can be implemented efficiently: 
–  Data structure 1 stores currently violated constraints 
–  Data structure 2 stores variables that are involved in violated 

constraints 

–  Each step only yields incremental changes to these data structures 

•  Most SLS algorithms can be implemented similarly 
efficiently → very small complexity per search step 

17 



Evaluating SLS algorithms 
•  SLS algorithms are randomized 

–  The time taken until they solve a problem is a random variable 
–  It is entirely normal to have runtime variations of 2 orders of 

magnitude in repeated runs! 
•  E.g. 0.1 seconds in one run, 10 seconds in the next one 
•  On the same problem instance (only difference: random seed) 
•  Sometimes SLS algorithm doesn’t even terminate at all: stagnation 

•  If an SLS algorithm sometimes stagnates, what is its mean 
runtime (across many runs)? 
–  Infinity! 
–  In practice, one often counts timeouts as some fixed large value X 

•  But results depend on which X is chosen 

19 



•  A better way to evaluate empirical performance 
–   Runtime distributions 

•  Perform many runs (e.g. below: 1000 runs) 
•  Consider the empirical distribution of the runtimes 

–  Sort the empirical runtimes 
(decreasing) 

Comparing SLS algorithms 

20 



•  A better way to evaluate empirical performance 
–   Runtime distributions 

•  Perform many runs (e.g. below: 1000 runs) 
•  Consider the empirical distribution of the runtimes 

–  Sort the empirical runtimes (decreasing) 
–  Rotate graph 90 degrees. E.g. below: longest run took 12 seconds 

 

Comparing SLS algorithms 

21 



Comparing runtime distributions 
    x axis: runtime (or number of steps) 

y axis: proportion (or number) of runs solved in that runtime 
–  Typically use a log scale on the x axis 
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      28% solved  
after 10 steps, 
then stagnate 

      57% solved  
after 80 steps, 
then stagnate 

      Slow, but does 
not stagnate       Crossover point: 

if we run longer than 80 
steps, green is the  
best algorithm 

       If we run less than 
10 steps, red is the 
best algorithm 

     Which algorithm is most likely to 
solve the problem within 30 steps? blue green red 



Comparing runtime distributions 
•  Which algorithm has the best median performance? 

–  I.e., which algorithm takes the fewest number of steps to be 
successful in 50% of the cases? 

��	(���������
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)��������#
#�
�
� ��.�
)�
��
�����,������
��

�������
���

      28% solved  
after 10 steps, 
then stagnate 

      57% solved  
after 80 steps, 
then stagnate 

      Slow, but does 
not stagnate 

blue green red 



Comparing runtime distributions 
•  Which algorithm has the best 70% quantile performance? 

–  I.e., which algorithm takes the fewest number of steps to be 
successful in 70% of the cases? 

��	(���������
��.�
)��������#
#�
�
� ��.�
)�
��
�����,������
��

�������
���

      28% solved  
after 10 steps, 
then stagnate 

      57% solved  
after 80 steps, 
then stagnate 

      Slow, but does 
not stagnate 

blue green red 



Pro’s and Con’s of SLS 
•  Typically no guarantee to find a solution even if one exists 

–  Most SLS algorithms can sometimes stagnate 
•  Not clear whether problem is infeasible or the algorithm stagnates 
•  Very hard to analyze theoretically 

–  Some exceptions: guaranteed to find global minimum as time → ∞ 
•  In particular random sampling and random walk:  

strictly positive probability of making N lucky choices in a row 

•  Anytime algorithms 
–  maintain the node with best h found so far (the �incumbent�)  
–  given more time, can improve their incumbent 

•  Generality: can optimize arbitrary functions with n inputs 
–  Example: constraint optimization 
–  Example: RNA secondary structure design 

•  Generality: dynamically changing problems 
7 



SLS generality: Constraint Optimization Problems 

•  Constraint Satisfaction Problems 
–  Hard constraints: need to satisfy all of them 
–  All models are equally good 

•  Constraint Optimization Problems 
–  Hard constraints: need to satisfy all of them 
–  Soft constraints: need to satisfy them as well as possible 
–  Can have weighted constraints 

•  Minimize h(n) = sum of weights of constraints unsatisfied in n 
•  Hard constraints have a very large weight 
•  Some soft constraints can be more important than other soft 

constraints → larger weight 
–  All local search methods we will discuss work just as well for 

constraint optimization 
•  all they need is an evaluation function h 

28 



Example for constraint optimization problem 

Exam scheduling  
–  Hard constraints:  

•  Cannot have an exam in too small a room 
•  Cannot have multiple exams in the same room in the same time slot 
•  … 

–  Soft constraints 
•  Student should not have to write two exams at the same time 

(important) 
•  Students should not have multiple exams on the same day 
•  It would be nice if students had their exams spread out  
•  … 

29 



SLS generality: optimization of arbitrary functions 

•  SLS is even more general 
–  SLS’s generality doesn’t stop at constraint optimization 
–  We can optimize arbitrary functions f(x1, …, xn) that we can 

evaluate for any complete assignment of their n inputs 
–  The function’s inputs correspond to our possible worlds,  

i.e. to the SLS search states 

•  Example: RNA secondary structure design 

30 
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Example: SLS for RNA secondary structure design 
•  RNA strand made up of four bases: cytosine 

(C), guanine (G), adenine (A), and uracil (U) 
•  2D/3D structure RNA strand folds into  

is important for its function 
•  Predicting structure for a  

strand is �easy�: O(n3) 
•  But what if we want a strand that folds  

into a certain structure? 
–  Local search over strands 

•  Search for one that folds  
into the right structure 

–  Evaluation function for a strand 
•  Run O(n3) prediction algorithm 
•  Evaluate how different the result is  

from our target structure 
•  Only defined implicitly, but can be  

evaluated by running the prediction algorithm 

RNA strand 
GUCCCAUAGGAUGUCCCAUAGGA 

Secondary structure 

Easy Hard 

Best algorithm to date: Local search algorithm RNA-SSD developed at UBC 
[Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004] 



SLS generality: dynamically changing problems 

•  The problem may change over time 
–  Particularly important in scheduling 
–  E.g., schedule for airline: 

•  Thousands of flights and thousands of personnel assignments 
•  A storm can render the schedule infeasible 

•  Goal: Repair the schedule with minimum number of 
changes 
–  Often easy for SLS starting from the current schedule 
–  Other techniques usually: 

•  Require more time 
•  Might find solution requiring many more changes 

32 



Many different types of local search 

•  There are many different SLS algorithms 
-  Each could easily be a lecture by itself 
-  We will only touch on each of them very briefly 
-  Only need to know them on a high level 

•  For more details, see 
-  UBC CS grad course �Empirical Algorithmics� by Holger Hoos 
-  Book �Stochastic Local Search: Foundations and Applications”  

by Holger Hoos & Thomas Stützle, 2004 (in reading room) 

 

14 



Simulated Annealing 
•  Annealing: a metallurgical process where metals are 

hardened by being slowly cooled so settle into lowest energy 
state 

•  Analogy:  
–  start with a high ‘temperature’: great tendency to take random steps 
–  Over time, cool down: only take random steps that are not too bad 

•  Details: 
–  At node n, select a random neighbour n’ 
–  If h(n�) < h(n), move to n�   (i.e. accept all improving steps) 
–  Otherwise, adopt it with a probability depending on 

•  How much worse n’ is than n 
•  the current temperature T: high T tends to accept even very bad moves 
•  Probability of accepting worsening move: exp( (h(n) – h(n’) )/ T ) 

–  Temperature reduces over time, according to an annealing schedule 
•  “Finding a good annealing schedule is an art” 
•  E.g. geometric cooling: every step multiply T by some constant < 1 

15 



Tabu Search 

•  Mark partial assignments as tabu (‘taboo’= forbidden) 

–  Prevents repeatedly visiting the same (or similar) local minima 

–  Maintain a queue of k variable=value assignments that are tabu 

–  E.g., when changing V7�s value from 2 to 4, we cannot change V7 
back to 2 for the next k steps 

–  k is a parameter that needs to be optimized empirically 

16 



Iterated Local Search 
•  Perform iterative best improvement to get to local minimum 
•  Perform perturbation step to get to different parts of the 

search space 
–  E.g. a series of random steps (random walk) 
–  Or a short tabu search 

17 



Beam Search 
•  Keep not just 1 assignment, but k assignments at once 

–  A ‘beam’ with k different assignments (k is the ‘beam width’) 

•  The neighbourhood is the union of the k neighbourhoods 
–  At each step, keep only the k best neighbours 
–  Never backtrack 

•  When k=1, this is identical to: 

–  Single node, always move to best neighbour: greedy descent 

•  When k=∞, this is basically: 

–  At step m, the beam contains all nodes m steps away from the start node 
–  Like breadth first search,  

but expanding a whole level of the search tree at once 

•  The value of k lets us limit space and parallelism 

Greedy descent Best first search Breadth first search 

Greedy descent Best first search Breadth first search 

18 



Stochastic Beam Search 
•  Like beam search, but you probabilistically choose the k 

nodes at the next step (‘generation’) 

•  The probability that neighbour n is chosen depends on h(n) 
–  Neighbours with low h(n) are chosen more frequently 
–  E.g. rank-based: node n with lowest h(n) has highest probability 

•  probability only depends on the order, not the exact differences in h 
–  This maintains diversity amongst the nodes 

 
•  Biological metaphor:  

–  like asexual reproduction: 
each node gives its mutations and the fittest ones survive 

19 



Genetic Algorithms 
•  Like stochastic beam search, but pairs of nodes are 

combined to create the offspring 

•  For each generation: 
–  Choose pairs of nodes n1 and n2 (‘parents’),  

where nodes with low h(n) are more likely to be chosen from the 
population 

–  For each pair (n1, n2), perform a cross-over:  
create offspring combining parts of their parents 

–  Mutate some values for each offspring 
–  Select from previous population and all offspring which nodes to 

keep in the population 

20 



Example for Crossover Operator 
•  Given two nodes: 

  X1 = a1,  X2 = a2,  …,  Xm = am 
  X1 = b1;  X2 = b2,  …,  Xm = bm 

•  Select i at random, form two offspring: 
 X1 = a1,  X2 = a2,  …, Xi = ai,  Xi+1 = bi+1,  …,  Xm = bm 
 X1 = b1,  X2 = b2,  …, Xi = bi,  Xi+1 = ai+1,  …,  Xm = am 
 

•  Many different crossover operators are possible 

•  Genetic algorithms is a large research field 
–  Appealing biological metaphor 
–  Several conferences are devoted to the topic 

21 



Parameters in stochastic local search 
•  Simple SLS 

–  Neighbourhoods, variable and value selection heuristics, 
percentages of random steps, restart probability 

•  Tabu Search 
–  Tabu length (or interval for randomized tabu length) 

•  Iterated Local Search 
–  Perturbation types, acceptance criteria 
 

•  Genetic algorithms 
–  Population size, mating scheme, cross-over operator, mutation rate 

•  Hybridizations of algorithms: many more parameters 
23 



The Algorithm Configuration Problem 
Definition 

–  Given: 
•  Runnable algorithm A, its parameters and their domains 
•  Benchmark set of instances B 
•  Performance metric m 

–  Find: 
•  Parameter setting (‘configuration’) of A optimizing m on B 

UBC Ph.D. thesis (Hutter, 2009): “Automated configuration of 
algorithms for solving hard computational problems” 

Motivation for automated algorithm configuration 
Customize versatile algorithms  
for different application domains 
–  Fully automated 

•  Saves valuable human time 
•  Can improve performance dramatically 24 
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Generality of Algorithm Configuration 
Arbitrary problems, e.g. 

–  SAT, MIP, Timetabling, Probabilistic Reasoning, Protein 
Folding, AI Planning, …. 

Arbitrary parameterized algorithms, e.g. 
–  Local search 

•  Neighbourhoods, restarts, perturbation types, tabu length, etc 
–  Genetic algorithms & evolutionary strategies 

•  Population size, mating scheme, crossover operators, mutation 
rate, hybridizations, etc 

–  Systematic tree search  
(advanced versions of arc consistency + domain splitting) 

•  Branching heuristics, no-good learning, restart strategy, pre-
processing, etc 
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Simple Manual Approach for Configuration 

 
 Start with some configuration 
 repeat 

  Modify a single parameter 
  if results on benchmark set improve  then 

    keep new configuration 
 until no more improvement possible (or “good enough") 
 
 
  →  Manually executed local search 
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The ParamILS Framework 
[Hutter, Hoos & Stützle; AAAI '07 & Hutter, Hoos, Leyton-Brown & Stützle; JAIR'09] 
 

     Iterated Local Search in parameter configuration space: 
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Example application for ParamILS:  
solver for mixed integer programming (MIP) 

 

IP: NP-hard constraint optimization problem 
                              MIP = IP with only some integer variables 
                                                     
Commercial state-of-the-art MIP solver IBM ILOG CPLEX: 

–  licensed by > 1000 universities and 1300 corporations, including 
⅓ of the Global 500 

  
Up to 50-fold speedups just by optimizing the parameters! 

Supply chain  
management 

software: 
Oracle, SAP, … 

Transportation/Logistics: 
SNCF, United Airlines,  
UPS, United States  
Postal Service, … 

Production planning  
and optimization: 

Airbus, Dell, Porsche, 
Thyssen Krupp,  

Toyota, Nissan, … 


