Fundamentals of Integer
Programming

Di Yuan

Department of Information Technology,
Uppsala University

January 2025

UPPSALA
UNIVERSITET

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

Qutline

Definition of integer programming

Formulating some classical problems with integer
programming

m Linear programming

Solution methods for integer programming

Solvers and their interface

Impact of modeling on problem solving

Institutionen for informationsteknologi | www.it.uu.se

Definition of Integer Programming

UPPSALA
UNIVERSITET

Optimization and Programming

m Mathematical programming: to find the best solution from a set of

Ae) alternatives
&) . L
§ m Mathematical models for optimization problems
g » Optimization variables encoding problem solution
2 » Constraints defined using mathematical functions and equation/inequality
o » Objective function (a mathematical function of the variables)
o
S
max
= — f(=)
@) min
¥ g
=

s.t. gi(x) ~bj,e=1,...,m

@ is the vector of variables, and ~ can be any of <, =, and >

Institutionen for informationsteknologi | www.it.uu.se

Definition of Integer Programming

UPPSALA
UNIVERSITET

Types of Optimization Models

min min

max max u
— f(z) —) ¢z
=1
s.t. gi(x) ~bj,i=1,....m !

n
s. t. Zaij:cj sz',i = 1,...,7’!’&
7=1
x; integer,j = 1,...,k (where k <n)

m Linear functions + continuous variables: linear programming

m Linear functions + integer variables: integer (linear) programming
» Mixed integer programming: Both integer and continuous variables
» Special case: Binary variables

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

m (Nonlinear programming and integer nonlinear programming)

Note: All combinatorial optimization problems can be formulated as (mixed)
integer programming models

Institutionen for informationsteknologi | www.it.uu.se

Definition of Integer Programming

Ml MOre on Mathematical Programming
Models

m A mathematical programming model always uses mathematical
functions to define constraints

m Examples of statements that do not qualify

* Xl=y

» |fx>0theny =1 (assumingy is binary; either O or 1)

» Either x or y must be zero

* max(x,y)>=1

m For combinatorial optimization, in many/most cases we can
translate such conditions using functions and equality/inequality

* X <=My, where M is a big enough number, will ensurey =1ifx >0

» XYy =0implies at least one of the two must be zero (even though xy is a
nonlinear function and hence not easy to deal with)

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

Institutionen for informationsteknologi | www.it.uu.se

ul

Modeling Some Classical Problems with Integer Programming

UPPSALA
UNIVERSITET

Binary Knapsack

m Given:
» A set of 1 items, each with a value ¢; and weight @;

A knapsack with a weight limit b

m Select items to maximize the total value of the knapsack, without
exceeding the weight limit

x; = 1 if item 7 is chosen

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

mn
max ZCZ'LC@'
i=1
mn
S. t. Zaizci < b
i=1
x € {0,1}

Institutionen for informationsteknologi | www.it.uu.se

(@)

UPPSALA
UNIVERSITET

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

Modeling Some Classical Problems with Integer Programming

Coloring

m Given: a graph with nodes and edges

m Assign a color to each vertex (node); two adjacent vertexes must
use different colors

m Minimize the total number of colors used

Institutionen for informationsteknologi | www.it.uu.se

N

UPPSALA
UNIVERSITET

(@)
O
@)
-
-
D
o
(7))
-
@)
e
©
&
-
@)
(€t
c

Modeling Some Classical Problems with Integer Programming

Coloring (cont’d)

z; = color (an integer value) of node i Node 2

Node 1 /
min maxz; Q@
(4

s. t. 21 # 29 /

z Integer

However, as was mentioned, an integer programming model cannot deal with a
constraint like z1 # 2, or the case of an “or” condition: z; > zo4+1or z; < zo—1

Institutionen for informationsteknologi | www.it.uu.se

Modeling Some Classical Problems with Integer Programming

UPPSALA
UNIVERSITET

Coloring (cont’d)

Define color set C e 1;. = 1 if node 7 has color ¢
e y. = 1 if color ¢ is used (by some node)

min Yred T Yblue T - - -
S. t. T1,red -+ T1 . blue 4+ - = 1 Node 2

X2 red + T2 blue + - =1 Node 1/
.\ |

Piea S Yrea Formulates 1 /
Lired = 1 = Yred =
L1 blue S Yblue

L1 blue = 1 — Yblue = 1

L1,red + L2 red S 1

(@)
O
@)
-
-
D
o
(7))
-
@)
e
©
&
-
@)
(€t
c

L1 blue + L2 blue <1

Institutionen for informationsteknologi | www.it.uu.se

Modeling Some Classical Problems with Integer Programming

UPPSALA
UNIVERSITET

Uncapacitated Facility Location

m Given:
» A set of candidate facility (e.g., warehouse) locations
» A set of customers
» Opening a facility has a fixed charge
» Transportation cost between facility locations and customers

m Determine which facilities to deploy and the customers served by
each deployed facility, minimizing the total cost

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

Facilities Customers

Institutionen for informationsteknologi | www.it.uu.se

10

UPPSALA
UNIVERSITET

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

Modeling Some Classical Problems with Integer Programming

Uncapacitated Facility Location (cont’d)

e [: Candidate set of facility locations
e J: Set of customers

o fi: Fixed charge, i €

e ¢;;: Transportation cost, i € [,7 € J

o v;; = 1 if facility ¢ € I serves customer j
e y; = 1 if facility ¢ € I is deployed

min Z fiyi + Z Z CijTij

i€l icl jeJ
s. t. Z%j =1,vVjeJ
il
i <y, Vie I, VjeJ
x,y €{0,1}

Institutionen for informationsteknologi | www.it.uu.se

11

UPPSAL
UNIVERSITET

(@)
O
@)
-
-
D
o
(7))
-
@)
e
©
&
-
@)
(€t
c

Modeling Some Classical Problems with Integer Programming

Traveling Salesman Problem

m Given: a graph with edge costs

m Find a tour visiting each node in a graph exactly once with
minimum length

Institutionen for informationsteknologi | www.it.uu.se

12

Modeling Some Classical Problems with Integer Programming

UPPSALA
UNIVERSITET

Traveling Salesman Problem (cont’d)

e N: Set of nodes
e ¢;;: Cost of edge (i,7)

m How to formulate this problem by integer programming?
o x;; = 1 if city j is visited immediately after city i (i # j)
min)) cijwig /?
iEN jEN:j#i O i
st Y my=1LYieN w@
JEN:j#1 4_0
Z zj;=1VieN
JENT£i O‘—/O\Q
x € {0,1} =

Have we overlooked anything?

Z Z £Ez'j2].,VSCN

i€S jEN\S

Potential drawback of the formulation?

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

Institutionen for informationsteknologi | www.it.uu.se

-
W

Linear Programming

UPPSALA
UNIVERSITET

A Small Example

max &x1 + dxo
S.t. x1+x2 <6
911 + Do < 45
x1 > 0,22 > 0, integer

max 8xi + dxo

s.t. 11 +x22 <6
921 + dxo < 45
x1 20,220 20

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

Institutionen for informationsteknologi | www.it.uu.se

14

UPPSALA
UNIVERSITET

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

Linear Programming

Linear Programming Relaxation

m Relaxation: “removal” of some constraints/restrictions

m In general, the linear programming relaxation is an approximation
of the integer model; the solution of the former may be fractional

m Which one is easier to solve?
m LPisinP

Institutionen for informationsteknologi | www.it.uu.se

-
92}

Linear Programming

UNIVERSITET

Solving a Linear Programming Model

m Fundamental property: Optimum is located at one of the
extreme/corner points of the feasible region (why?)

\ FeasibI::gion><

m This is used by the Simplex Method for solving linear programs
(visiting a sequence of objective-improving extreme points)

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

m There are other efficient, interior-point methods

Institutionen for informationsteknologi | www.it.uu.se

16

Linear Programming

IL
UNIVERSITET

The Convex Hull

m Convex hull: The minimum convex set containing the solution space
X4

»

Convex hull of the
previous example

V'2<

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

m Integer programming = linear programming on the convex hull of
the integer points

m Convex hull exists, but its description is hard to derive in general

[EY
N

Institutionen for informationsteknologi | www.it.uu.se

UPPSALA
UNIVERSITET

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

Solution Methods for Integer Programming

Computing the Global Optimum

m General-purpose method: Linear programming relaxation +

» [terative improvement in approximating the convex hull, a.k.a. cutting
planes (cf. inference)

» Divide-and-conquer, a.k.a. branch-and-bound (relaxation + search)

Branch 2: y > b+ 1

LP optimum \ LP optimum

N Branch 1: y <b

m Optimality gap: The (relative) difference between the objective
value of the best known integer solution and that of the best
(“optimistic”) LP bound so far

Institutionen for informationsteknologi | www.it.uu.se

18

Solution Methods for Integer Programming

UPPSALA
UNIVERSITET

Cutting Planes: An Example

Knapsack problem instance:

max 6xq + 4xo + 6x3 + 724 + dx5 + 926 + 827
s. t. dx1 + 6x9 + 8x3 + 624 + 45 + 626 + D7 < 21
x € {0,1}

LP optimum: 1 = x5 =2 =7 =1, x4 = 0.167, 29 = 23 =0

Can we packitems 1, 4, 6, and 7 all in the knapsack? (5+6+6+5=22)

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

=1+ T4 +x6+2x7 <3

The above inequality (referred to as a “cover cut’) is valid for integer
solutions, but violated by the LP relaxation optimum

Institutionen for informationsteknologi | www.it.uu.se

19

Solution Methods for Integer Programming

UPPSALA
UNIVERSITET

Cutting Planes: An Example (cont’d)

Adding the cut to the linear programming relaxation:

max 6xq1 + 4xo + 623 + 724 + D5 + 926 + 827
s. t. 9x1 + 629 + 8x3 + 624 + 45 + 6206 + D7 < 21
1+ x4+ a6+ 27 <3
0<x<l1

LP optimum: x4y =5 =2¢ =27 =1, 21 =293 =23 =0

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

Challenge for the solver: To time-efficiently find valid and useful cuts

Institutionen for informationsteknologi | www.it.uu.se

N
o

UPPSALA
UNIVERSITET

(@)
O
@)
-
-
D
o
(7))
-
@)
e
©
&
-
@)
(€t
c

Solution Methods for Integer Programming

Branch-and-Bound: An Example

Same knapsack problem instance:

max 6xq + 4xs + 6x3 + T4 + S5 + 926 + 827
S. t. bxy + 6xs + 8xs + 624 + 45 + 626 + D7 < 21
x € {0,1}

LP optimum: 1 = x5 =2 =7 =1, x4 = 0.167, 29 = 23 =0

Rounding down x4 to zero gives an integer solution of value 6 +5 + 9 + 8 = 28
= Integer optimum is at least 28

Institutionen for informationsteknologi | www.it.uu.se 2 1

UPPSALA
UNIVERSITET

(@)
O
@)
-
-
D
o
(7))
-
@)
e
©
&
-
@)
(€t
c

Solution Methods for Integer Programming

Branch-and-Bound: An Example (cont’d)

Branching generates a search tree

LP = 29.16 77

Q x, = 0.167 (one fractional variable)

Opt.gap ="?
LP = 28.75
rs = 0.125 C/ \ Integer, value 29
=1

e Opt.gap =7
LP = 28.66 LP =255
r, = 0.167 r5 = 0.5

N
We can stop branching here if the integer solution of value 29 is known (wh

Can we stop branching here because of an integer solution of value 28?

Institutionen for informationsteknologi | www.it.uu.se

y?

N
N

RN RN RN AN e NN RN A RN RN RN AR A RN AR AN RO RN IR A AN n N u AR a IR R N a e nAnA AR AnAnaI ARt a e eanIneseasasasusss AT tmnmTm

Solvers and Their Interface

IL
UNIVERSITET

Optimization Solver

m Solver: software implementing methods for solving optimization

Institutionen for informationsteknologi | www.it.uu.se

Fe) models (here: integer programming models)
@ L :
e m Interface + optimization engine
§ m Many solvers: Gurobi, CPLEX, FICO Express, SCIP, MINTO, ...
L m Using Python to interact with solvers has become quite popular
0p)
S Solver interface
E - C/C++, Python (Gurobipy), Java, R, ... - C/C++/C#, Python, Java, ...
E - Command line - Command line
B - AMPL, GAMS... - CPLEX OPL, AMPL, GAMS...
¥ g
1=
Gurobi optimization engine CPLEX optimization engine

N
w

Solvers and Their Interface

UPPSALA
UNIVERSITET

Sample of Solver Log

Hodes Cuts/f
. — liocde Left Objective |IInf Best Integer Best Bound ItCnt Gap
c) 0 0 227006.7258 3 227006.7258 2417
O 0+ 0 232258.1349 2270068.7258 2.26%
B 0+ a 228124.0582 227008.7258 0.49%
0 0 227020.2075 2 228124.0562 Cuts: 34 2475 0.48
C 0 0 227020.4963 1 228124.0582 Cuts: 31 2500 0.48
X 0 0 227020.5204 1 228124.0562 Cuts: 11 2505 0.48
q) 0 2 227020.5204 1 228124.0562 227020.5204 2505 0.48
Elapsed time = 2.02 sec. (969.11 ticks, tree = 0.01 MB)
"(7) * 12+ 5 227702.7631 227025.7507 0.30%
17 7 2271681.74592 2 227702.7631 227025.7507 2710 0.30%
C 78 =20 cutoff 227702.7631 227034,4173 6130 0.29%
O 143 bt 227244.3466 1 227702.7631 227034.4173 9186 0.29%
. — 2068 100 cutoff 227702.7631 227094,1950 1178 0.27%
4 281 135 227586.9086 1 227702.7631 227179.3228 l4agaz 0.23%
CG 349 186 227409.3745 1 227702.7631 227199.4808 179 0.22
E 411 1z 227634.5232 1 227702.7631 227255.7513 a992 0.20%
467 195 227560.6384 2 227702.7631 227259,.8459 21664 0.19%
P 534 22 227494 ,.7655 1 227702.7631 227269.022 24765 0.19%
O 789 280 cutoff 227702.7631 227336.1536 3676 0.16%
L] Elapsed time = &.20 sec. (4102.59 ticks, tree = 2.89 MB)
C 1028 250 227652.5107 1 227702.7631 227408.65859 42317 0.13%
— 1349 121 227605.9339 1 227702.7631 227548.6905 53578 0.07%

Cover cuts applied: 14

Implied bound cuts applied: 291

Flow cuts applied: 4

Mixed integer rounding cuts applied: 17
Lift and project cuts applied: 1

Institutionen for informationsteknologi | www.it.uu.se

Impact of Modeling on Problem Solving

UPPSALA
UNIVERSITET

Uncapacitated Facility Location

Can we reduce the model size?

min Z Jiyi + Z Z CijTi;

(@)
O
6 icl icl jeJ
§ s. t. ZIEZJZI,VJEJ
q) 1€l
"(7) :Cijgyi,ViEI,VjGJ
- x,y € {0,1}
O
=
@ min Zfiyi + chz‘jxij
E icl icl jeJ
—
E s. t. Z$ij:1,\VIjEJ
c il
Zil?z'j < |J|yi,Viel
JjedJ
z,y € {0,1}

Institutionen for informationsteknologi | www.it.uu.se

N
92}

Impact of Modeling on Problem Solving

UPPSALA
UNIVERSITET

Uncapacitated Facility Location (cont’d)

Facilities Customers Aggregated Model Disaggregate Model
— (seconds) (seconds)
(@) 20 200 1.19 0.39
— 30 300 5.55 1.6
- 50 500 69.67 19.42
O 70 700 2362.67 764.30
L))
m AMPL Version 20060626 (Linux 2.6.9-5.EL) AMPL Version 20060626 (Linux 2.6.9-5.EL)
c Node log . . . Node log . . .
O Best integer = 1.433808e+05 Node = 0 Best node = Best integer = 4.704366e+04 Node = 0 Best node =
o — 1.687869e+04 2.203318e+04
e Best integer = 2.293498e+04 Node = 0 Best node = Best integer = 2.295632e+04 Node = 0 Best node =
(g0 1.687869e+04 2.203318e+04
Heuristic still looking. Heuristic still looking.
E Heuristic still looking. Best integer = 2.267411e+04 Node = 0 Best node =
w Heuristic complete. 2.203529e+04
Best integer = 2.276127e+04 Node = 828 Best node = Heuristic complete.
o 1.831542e+04
S Best integer = 2.267411e+04 Node = 1000 Best node = Gomory fractional cuts applied: 3
- 1.838685e+04 Using devex.
— Implied bound cuts applied: 2292 Times (seconds):
Flow cuts applied: 18 Solve = 764.304
L. CPLEX 10.1.0: optimal integer solution; objective 22674.11
Times (seconds): 157501 MIP simplex iterations
Solve = 2362.67 36 branch-and-bound nodes

CPLEX 10.1.0: optimal integer solution within mipgap or
absmipgap; objective 22674.11
1048766 MIP simplex iterations
16865 branch-and-bound nodes

Institutionen for informationsteknologi | www.it.uu.se

Impact of Modeling on Problem Solving

UPPSALA
UNIVERSITET

Coloring

Define color set C' e r,. — 1 if node 7 has color ¢

_ e y. = 1 if color ¢ is used (by some node)
min - Yred + Yolue + - - -

S. t. T1red + 1 plue +- =1 Node 2

T2 red t T2 blue + -+ = 1 Node 1/

L1, red < Yred
L1, blue < Yblue

L1, red + L2 red S 1

L'1,blue + L2 blue <1

T - Symmetry: Solution search becomes inefficient
x e {0,1},y € {0,1} - Alternative model of set-covering type

(@)
O
@)
-
-
D
o
(7))
-
@)
e
©
&
-
@)
(€t
c

Is this a good formulation? Other formulations?

Institutionen for informationsteknologi | www.it.uu.se 27

Impact of Modeling on Problem Solving

UPPSALA
UNIVERSITET

Coloring (cont’d)

Sample results for an extension of graph coloring:

o

O Nodes Model | (previous slide) Model Il (not shown)
@)

(- Best Solution Time Best Solution Time
¢

D

"(7') 10 10 0.1s 10 0.1s
- 20 16 1s 16 3s
@)

= 30 21 >10h 21 7s
®

E 40 15 >10h 15 32s
B 50 28 >10h 23 1m19s
e 60 31 >10h 26 4m31s

It may matter (a lot) which mathematical model you use

Institutionen for informationsteknologi | www.it.uu.se

N
(0]

u
UNIVERSITET

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

Final Remarks

m Integer linear programming (ILP) provides one tool (and a powerful

one in many cases) for combinatorial optimization

m An ILP model: Linear functions of integer/binary variables for stating

the objective function and constraints

m How to solve it: linear programming relaxation, cutting planes, and
branch-and-bound, implemented in modern solvers

m Modeling (how to express your problem as ILP) may be very crucial

for solution efficiency

m Recent trends include interaction of ILP and machine learning (ML)

» ML for ILP: How to branch? What cutting planes to use?

#» |LP for ML: Robustness check of trained neural networks

Institutionen for informationsteknologi | www.it.uu.se

N
(o]

UNIVERSITET

(@)
O
@)
-
-
D
o
(7))
-
@)
e
©
&
-
@)
(€t
c

Appendix: Introduction to Modeling with
AMPL

(OV)
o

Appendix: Introduction to Modeling with AMPL

= Modeling Language: Separation between
Model and Data

Kk K.
napsack.mod knapsack6.dat

Number of items

param NumItem >0; param NumItem := &7
Set of items param Limit := 14;
set ITEMS := 1..MNumItem, # Creates set {1, ..., NumItem}

param: Value Weight :=

Other parameters 1 17 5

param Limit >0; 5 10 1

param Valus {ITEMS} >=0;

param Weight {ITEMS} >=0; 3 235 >
4 11 2.5

4 Variable definition 3 30 4

var ¥ {ITEMS} binary; b 24 37

Objective function
maximize TotalvValue: sum {] in ITEMS} Vvalue[]] * x[]]:;

Weight limit constraint
subject to WeightLimit:
sum {] in ITEMS} Weight[3] * x[]] <= Limit;

(@)
O
@)
-
-
D
o
(7))
-
@)
e
©
&
-
@)
(€t
c

Institutionen for informationsteknologi | www.it.uu.se 3 1

UPPSALA
UNIVERSITET

(@)
O
@)
-
-
D
o
(7))
-
@)
e
©
&
-
@)
(€t
c

Appendix: Introduction to Modeling with AMPL

Command Script: An Example

Reset AMPL
reset;

Load AMPL model and data
model knapsack.mod;
data knapsack>00.dat;

Set solver parameters
option relax integrality 0;

option cplex options 'mipdisplay=Z ilntegrality=le-9% optimality=le-5% Cimelimit=3600";

Solve the problem
solve;

Display optimum and solution
display TotalValue;
display {] in ITEMS: =[]]1=1} x[]]:

quit;

Institutionen for informationsteknologi | www.it.uu.se 3 2

Appendix: Introduction to Modeling with AMPL

UPPSALA
UNIVERSITET

AMPL+ Solver

- Model and data specification
Command | - Solver options

o) - Display options
Q - etc.
O I
- |
= Model
q) ode Data
@ AMPL
7))
g - Sets - Set elements
= - Parameters - Parameter values
CG - Variables
E - Objective function Solver
w - Constraints
@)
e
- _ . .
— Result analysis . Feasible solution?

" Optimal solution?

" Optimum and variable value
" Solution time

= etc.

Institutionen for informationsteknologi | www.it.uu.se

33

UPPSALA
UNIVERSITET

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

Appendix: Introduction to Modeling with AMPL

AMPL Sets

m Simple sets (numbers or symbols)

set ITEMS := 1,2,3,4,5,67;
set ITTEMS := 1..6;
set DAYS := Mon, Tues, Wed, Thurs, Fri, Sat, sun;

m Indexed collection of sets

Declaration of base stations, test points, and coverage relation
set BASESTATIONS;

set TESTPOINTS;

set COVERAGE {TESTPOINTS} within BASESTATIONS;

Numerical wvalues in a data file

set BASESTATIONS := 1..100;

set TESTPOINTS := 1..10000;

set COVERAGE[1] := 1 3 10 15;:

set COVERAGE[Z] = 2 3 7 8 11 1% Z5;

Institutionen for informationsteknologi | www.it.uu.se

W
AN

Appendix: Introduction to Modeling with AMPL

UPPSALA
UNIVERSITET

AMPL Basics: Parameters

m Scalar parameter and parameters for set elements
param Limit;

param Capacity {Links};

m Bounds and default value

param Limit >0;

param MaxCapclity;
param Capacity {LINKS} >=0, <=MaxCapacity;

param Cost {BASESTATICNS} >=0 default 1000;
param Traffic {TESTPOINTS} >=0 default 0;

m Symbolic parameters

set DAYTS;
param FirstDay symbolic in DAYS;
param LastDay symbolic in DRYS;

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

Values 1n a data file

set DAYS := Mon, Tues, Wed, Thurs, Fri, Sat, sun;
param FirstDay := Mon;
param LastDay := 5Sun;

Institutionen for informationsteknologi | www.it.uu.se

35

Appendix: Introduction to Modeling with AMPL

UPPSALA
UNIVERSITET

AMPL Basics: Variables

m Similar to declaration of numerical parameters
m May have value and/or type restrictions

var ¥ {ITEMS} binary;

var production {DAYS} >=0, integer;

var flow {(i,]) in LINES} >=0, <=Capcityl[i,]l:;
var location {BRSESTATIONS} binary;

var serve {TESTPOINTS, BASESTATICNS} binary;

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

A more efficient declaration using set COVERAGE
var serve {] in TESTPOINTS, 1 in COVERAGE[]]} binary;

Institutionen for informationsteknologi | www.it.uu.se

36

UPPSALA
UNIVERSITET

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

Appendix: Introduction to Modeling with AMPL

AMPL Basics: Objective Function and
Constraints

m Integer linear programming: The objective is a linear expression

of the variables

maximize TotalvValue: sum {] in ITEMS} Vvalue[]]l * x[]]:

minimize TotalCost: sum {i in BASESTATIONS} Cost[i] * location[i] ;

m Single constraint

subject to WeightlLimit:
sum {] in ITEMS} Weight[]] * x[]] <= Limit;

m Indexed collections of constraints (with condition)

subject to ServiceCoverage {7 in TESTPOINTS: traffic[]]1>0}:
sum {1 in COVERAGE[]]} servel],1] >= 1;

Institutionen for informationsteknologi | www.it.uu.se

37

UPPSAL
UNIVERSITET

(@)
O
@)
-
-
D
o
(7))
-
@)
=
©
&
-
@)
(€t
c

Appendix: Introduction to Modeling with AMPL

AMPL Basics: A Complete Model for Set
Covering

set CENTERS;

set POINTS;

set COVERAGE {POINTS} within CENTERS;

param Cost {CENTERS} >=0;

var x¥ {CENTERS} binary;

minimize TotalCost: sum {1 in CENTERS} Cost[i] * x[i];
subject to Covering {] in FOINTS}:

-sum {1 in COVERAGE[]]} x=[1] >= 1;

Institutionen for informationsteknologi | www.it.uu.se

38

