Chapter 00: Introduction
(Version of 7th January 2025)

Pierre Flener

Department of Information Technology
Computing Science Division

Uppsala University

Sweden

Course 1DL481:
Algorithms and Data Structures 3 (AD3)

https://pierre-flener.github.io

UPPS:
UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation

Outline

1. The End of Course AD2

2. Combinatorial Optimisation
Constraint Problems
Solving Technologies
Modelling
Solving

3. Course AD3
Contents
New Concepts
Learning Outcomes
Organisation

Outline

UNIVERSITET

1. The End of Course AD2

The End of
Course AD2

Combinatorial
Optimisation

UPPSALA
UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation

Course AD3

In a decision problem we seek a ‘yes’ / ‘'no’ answer to an existence question.
An instance of a problem is given by its input data.

Example (Travelling salesperson: Decision TSP)

Given a budget b and a map with n cities, is there a route visiting each city
exactly once, returning to the starting city, and costing at most b ?

A decision problem R is:
m in NP if a witness to a ‘yes’ instance is checkable in time polynomial in the
instance size: checking is in P;
m NP-complete if in NP and there is a reduction from each problem Q in NP,
polytime converting any instance of Q into a same-answer instance of R.
It is believed that NP-complete problems are intractable (or: hard),
requiring non-polynomial time to solve exactly.

Example

TSP is NP-complete as a witness is checkable in O(n) time and
the NP-complete Hamiltonian-Cycle problem reduces to it.

_4-

In a satisfaction problem we seek a witness for a ‘yes’ answer.

UPPSALA
UNIVERSITET

Example (Satisfaction TSP)

Given a budget b and a map with n cities, find a route visiting each city

The End of exactly once, returning to the starting city, and costing at most b.
Course AD2

bl [N an optimisation problem we seek an optimal witness, according to
some objective function, for a ‘yes’ answer.

Example (Optimisation TSP)

Given a map with n cities, find a cheapest route visiting each city
exactly once and returning to the starting city.

Course AD3

In addition to decision problems that are at least as hard as every NP problem
(as every NP problem reduces to them), satisfaction and optimisation problems
with NP-complete decision versions are often also said to be NP-hard:

they are unlikely to be easier than their decision versions.

_5-

& What Now?

UNIVERSITET

The End of Several courses at Uppsala University teach techniques
Course AD2 for addressing NP-hard optimisation and satisfaction problems:

Combinatorial
Optimisation

1TD184 Continuous Optimisation (period 2)

Pl 0451 Modelling for Combinatorial Optimisation (period 2)

1DL481 Algorithms and Data Structures 3 (period 3)

NP-hardness is not where the fun ends, but where it begins!

https://www.uu.se/en/study/course?query=1TD184
https://www.uu.se/en/study/course?query=1DL451

Example (Optimisation TSP over n cities)
A brute-force algorithm evaluates all n! candidate routes:
m A computer of today evaluates 10° routes / second:

UPPSALA
UNIVERSITET

The End of n time
Course AD2 11 40 seconds
Combinatorial 14 1 day
Optimisation 18 203 years

20 77k years

m Planck time is the shortest useful interval: ~ 5.4 - 10~%* seconds;
a Planck computer would evaluate 1.8 - 103 routes / second:

n time
37 0.7 seconds
41 20 days

48 1.5 - age of universe
The dynamic program by Bellman-Held-Karp “only” takes O(n? - 2") time:
a computer of today takes a day for n = 27, a year for n = 35, the age of the
universe for n = 67, and beats the O(n!) algo on Planck computer for n > 44.

_7-

Intelligent Search upon NP-Hardness

UP A
UNIVERSITET

Do not give up but try to stay ahead of the curve:
there is an instance size until which an exact algorithm is fast enough!

The End of
Course AD2

—— n! (today)
ombinatorial N
e c%’ 1018 1 / /— age of universe
O
(%]
1013 | Z.2n
> n- - 2" (today)
o
- 108 ¢ / 1 year
» 105 / 1 day
© /
£ 100 —— ‘ ‘ ‘ ‘
= I ! } t —> N
10 14 27 35 44 48

Concorde TSP Solver beats Bellman-Held-Karp exact algorithm: it uses local
search & approximation algos, but sometimes proves exactness of its optima.
The largest instance solved exactly, in 136 CPU years in 2006, has n = 85900.

-8-

https://www.math.uwaterloo.ca/tsp/concorde

UPPSALA OUtI i ne

UNIVERSITET

The End of
Course AD2

2. Combinatorial Optimisation
Constraint Problems
Solving Technologies
Modelling
Solving

Combinatorial
ptimisati

UPPSALA Optimisation

The End of
Course AD2

Combinatorial
imisation

Optimisation is a science of service:
to scientists, to engineers, to artists, and to society.
-10 -

UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation

Constraint Problems

Outline

2. Combinatorial Optimisation
Constraint Problems

UPPSALA
UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation
Constraint Problems

Example (Agricultural experiment design)
plot1 plot2 plot3 plot4 plot5 plot6 plot7

barley

corn

millet

oats

rye

spelt

wheat

Constraints to be satisfied:

Equal growth load: Every plot grows 3 grains.

Equal sample size: Every grain is grown in 3 plots.

Balance: Every grain pair is grown in 1 common plot.
Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.

UPPSALA
UNIVERSITET

Example (Agricultural experiment design)
plot1 plot2 plot3 plot4 plot5 plot6 plot7
7 v - - -

barley v -
The End of corn v - - v v - -
Course AD2 millet [/ - - - - O/
Cun_lbi_natfnrial oats = v = v = v =
Optimisation
Gonsizint Probems rye = v = = v = v
spelt - - v v - - v
wheat - v - v v =

Constraints to be satisfied:

Equal growth load: Every plot grows 3 grains.

Equal sample size: Every grain is grown in 3 plots.

Balance: Every grain pair is grown in 1 common plot.
Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.

UPPSALA
UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation
Constraint Problems

Course AD3

Example (Doctor rostering)
Mon Tue Wed Thu

Fri

Sat

Sun

Doctor A

Doctor B

Doctor C

Doctor D

Doctor E

Constraints to be satisfied:
/day = 1
#operating doctors / weekday < 2
#operating doctors / week > 7
#appointed doctors / week > 4
after operation day
A...

Objective function to be minimised: Cost: ...

-13-

Example (Doctor rostering)

UPPSALA

SRS Mon Tue Wed Thu Fri Sat Sun

Doctor A oper oper

Doctor B | appt oper
Course AD2 Doctor C | oper appt | appt
Combinatorial Doctor D | appt oper oper
Optimisation

Doctor E | oper oper

Constraints to be satisfied:
/day = 1

#operating doctors / weekday < 2
#operating doctors / week > 7
#appointed doctors / week > 4
after operation day

A...

Objective function to be minimised: Cost: ...

-13-

UPPSALA
UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation
Constraint Problems

Example (Vehicle routing: parcel delivery)

Given a depot with parcels for clients and a vehicle fleet,
find which vehicle visits which client when.

Constraints to be satisfied:
All parcels are delivered on time.
No vehicle is overloaded.
Driver regulations are respected.

Objective function to be minimised:
m Cost: the total fuel consumption and driver salary.

UPPSALA
UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation

Application Areas

School timetabling

(IR RERR]

www.shutterstock kcom - 130768249

Sports tournament design

;uans}ihandbon

|

Applications in Programming and Testing

UNIVERSITET

Robot programming

Sensor-net configuration

The End of
Course AD2

Combinatorial
Optimisation
Constraint Problems

O Sensor Node|

Gateway
Sensor Nod

-

C;(;uv:seADB Compiler design Base-station testing

Contents COMPILERS e e
New Concept FOR INSTRUCTION SCHEDULING I Base Station I
earning Outcom |
Organisatior - Magnetic
I Modular
C Compiler ” | Modu f_>
®145) || wireess
C++ Compiler \ Iirstrciure
Base Station |
1 r2,T 2,1 I @
add r2,r2 ,#123 A 1d 13,0 1
st 2, I 8 addl r2, 12 123 | |>
1d 3,37 | sub 13,13 #5677 Data Center
sub 13,13 ,#567- Wt or2, I Connemr I
st orEd st rEd I
|

Applications in Air Traffic Management

UNIVERSITET

Demand Vs _capacity Airspace sectorisation

The End of
Course AD2

Combinatorial
Optimisation

e

Constraint Problems
Contlngency plannlng Workload balancing
Flow Time Span Hourly Rate \
From: Arlanda 00:00 — 09:00

To: west, south 09:00 - 18:00
18:00 — 24:00
From: Arlanda 00:00 — 12:00
To: east, north 12:00 — 24:00

VA

e aldow

UPPSALA
UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation

Constraint Problems

Applications in Biology and Medicine

Phylogenetic supertree

Haplotype inference
Mother T € A G | A]

Father [T [G [A [€ [T [€ |

o BN =1

Homozygous Heterazygous

Doctor rostering

Haplotypes

UPPSALA
UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation
Constraint Problems

Ina , values have to be found for all the unknowns,
called (in the mathematical sense; also called)
and ranging over given sets, called , SO that:

m All the given on the decision variables are satisfied.

m Optionally: A given on the decision variables has an

optimal value: either a minimal cost or a maximal profit.

A to a constraint problem maps each decision variable to a
value within its domain; it is:

[if all the constraints are satisfied,;

] if the objective function takes an optimal value.
The consists of all candidate solutions.
A to a is feasible.

An to an is feasible and optimal.

UPPS:
UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation

Constraint Problems

ogie:

Search spaces are often larger than the universe!

Many important real-life problems are NP-hard or worse: their real-life
instances can only be solved exactly and fast enough by intelligent search,
unless P = NP. = NP-hardness is not where the fun ends, but where it begins!

-20-

UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation
Constraint Problems
Solving Technologies
! .

Course AD3

Outline

2. Combinatorial Optimisation

Solving Technologies

_21-

UPPS:
UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation

Constraint Problems

A solving technology offers languages, methods, and tools for:
what: Modelling constraint problems in a declarative language.
and / or

how: Solving constraint problems intelli

° : Explore the space of candidate solutions.
® |nference: Reduce the space of candidate solutions.

. : Exploit solutions to easier problems.

A solver is an off-the-shelf program that takes any model and data as input
and tries to solve that problem instance.

Combinatorial (= discrete) optimisation covers satisfaction and optimisation
problems for variables ranging over discrete sets: combinatorial problems.

_o2-

UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation
nt P S

Modelling

Solving

Course AD3

Outline

2. Combinatorial Optimisation

Modelling

-23-

Example (Agricultural experiment design, AED)

plot1 plot2 plot3 plot4 plot5 plot6 plot7
v v - - -

barley
corn
The End of millet
Course AD2 oats
rye =
spelt -
wheat — — v

v

SN
SN

Combinatorial
Obtimisati

NN]

[
S SN TS
NN

AN

SN TN

lving

el Constraints to be satisfied:
Equal growth load: Every plot grows 3 grains.
Equal sample size: Every grain is grown in 3 plots.
Balance: Every grain pair is grown in 1 common plot.
Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.

General term: balanced incomplete block design (BIBD).
-24 -

Example (Agricultural experiment design, AED)
plot1 plot2 plot3 plot4 plot5 plot6 plot7

barley 1 1 1 0 0 0 0

corn 1 0 0 1 1 0 0

The End of millet 1 0 0 0 0 1 1
Course AD2 oats | 0 1 0 1 0 1 0
LA rye [0 1 0 0 1 0 1
spelt 0 0 1 1 0 0 1

wheat 0 0 1 0 1 1 0

lving

Course AD3 Constraints to be satisfied:

ts
Ne:

Equal growth load: Every plot grows 3 grains.

Equal sample size: Every grain is grown in 3 plots.

Balance: Every grain pair is grown in 1 common plot.
Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.

General term: balanced incomplete block design (BIBD).
-24 -

UPPSALA
UNIVERSITET

The End of
Course AD2

Combinatorial i
Optimisation

In a BIBD, the plots are called blocks and the grains are called varieties:

Example (BIBD integer model: v ~~ 1 and —~~ 0)

3 enum Varieties; enum Blocks;
2 int: blockSize; int: sampleSize; int: balance;
1 array[Varieties,Blocks] of var 0..1: BIBD; % BIBD[v,b]=1 iff v is in b
0 solve satisfy;
1 constraint forall(b in Blocks) (blockSize = count (BIBD[..,b], 1));
2 constraint forall (v in Varieties) (sampleSize = count (BIBD[v,..], 1));
3 constraint forall(v, w in Varieties where v < w)

(balance = count ([BIBD[v,b] BIBD[w,Db] b in Blocks],));

Example (Instance data for our AED)

-3 Varieties {barley, ,wheat}; Blocks {plotl, ,plot7};
2 blockSize = 3; sampleSize = 3; balance = 1;

-25-

UPPSALA
UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation

Modelling

Solving

Course AD3

Reconsider the model fragment:

2 constraint forall(v in Varieties) (sampleSize = count (BIBD[v,..],

This constraint is declarative (and by the way not within linear algebra),
so read it using only the verb “to be” or synonyms thereof:

for all varieties ~,
the count of occurrences of 1 in row v of BIBRD
must equal sampleSize

The constraint is not procedural:

for all varieties v,
we first count the occurrences of 1 in row v
and then check if that count equals sampleSize

The latter reading is appropriate for solution checking,
but solution finding performs no such procedural counting.

-26-

1))

UPPSAL
UNIVERSITET

Example (Idea for another BIBD model)

barley | {plot1, plot2, plot3 }

e End of corn | {plott, plot4, plot5 }
Course AD2 millet | {plot1, plot6, plot7}
' oats | { plot2, plot4, plot6 }

rye | { plot2, plot5, plot7}

spelt | { plot3, plot4, plot7}

wheat | { plot3, plot5, ploté }

Constraints to be satisfied:
Equal growth load: Every plot grows 3 grains.
Equal sample size: Every grain is grown in 3 plots.
Balance: Every grain pair is grown in 1 common plot.

_27-

UPPSALA Example (BIBD set model: a block set per variety)

UNIVERSITET

enum Varieties; enum Blocks;
int: blockSize; int: sampleSize; int: balance;
NS ThAl ' array([Varieties] of var set of Blocks: BIBD; % BIBD[v] = blocks for v
Course AD2 solve satisfy;
Combinatorial constraint forall (b in Blocks)
OmmT?Mn (blockSize = sum(v in Varieties) (b in BIBD[V]));
constraint forall(v in Varieties)
ﬁﬁ? (sampleSize = card(BIBD[Vv]));
Course AD3 constraint forall(v, w in Varieties where v < w)
(balance = card(BIBD[v] intersect BIBD[w]));

Example (Instance data for our AED)

-3 Varieties {barley, ,wheat}; Blocks {plotl, ,plot7};
2 blockSize = 3; sampleSize = 3; balance = 1;

-28-

Example (Doctor rostering)

UPPSALA

SRS Mon Tue Wed Thu Fri Sat Sun
Doctor A oper oper
Doctor B | appt oper
Course AD2 Doctor C | oper appt | appt
Combinatorial Doctor D | appt oper oper
Optimisation
Doctor E | oper oper
Constraints to be satisfied:
Course AD3 # /day =1

#operating doctors / weekday < 2
#operating doctors / week > 7
#appointed doctors / week > 4
after operation day

A...

Objective function to be minimised: Cost: ...

-29-

UPPSALA Example (DOCtor rOStering)

EOMNN 5 set of int: Days; % d mod 7 = 1 iff d is a Monday

enum Doctors;

enum ShiftTypes = {appt, call, oper, none};

The End of % Roster([i, j] = shift type of Dr i on day 7j:

Y | array[Doctors,Days] of var ShiftTypes: Roster;

Combinatorial solve minimize ...; % plug in an objective function

Optimisation constraint forall(d in Days) (count (Roster[..,d],call) = 1);
e constraint forall(d in Days where d mod 7 in 1..5)

Modeling (count (Roster[..,d],oper) <= 2);

e constraint count (Roster,oper) >= 7;

constraint count (Roster,appt) >= 4;

constraint forall(d in Doctors)
(regular (Roster([d, ..],))

)

% other constraints

Course AD3

Example (Instance data for our small hospital unit)

5 Days = 1..7;
-4 Doctors = {Dr_A, Dr_B, Dr_C, Dr_D, Dr_E};

-30-

UPPS,
UNIVERSITET

The End of
Course AD2

Combinatorial
ptimisation

Example (Sudoku)

8 811/2]715|3|6/4|9
3|6 914|3|6|8(2]|1|7|5
7 9 |2 6/715]41911]2|8(3
5 7 1/5/4]2|3(718|9|6
4|57 316/9]18|4|5|7|2]|1
1 3 2/18|7]1116/9(5]|3]|4
1 6|8 512]1]9(7[4]|3/6|8
815 1 4/3|8]15|2|6(9]1]7
9 4 71916]13]1]8]4[5]2
array[1..9,1..9] of var 1..9: Sudoku;
% load the hints
solve satisfy;
constraint forall (row in 1..9) (all_different (Sudokul[row,..]));

constraint forall(col in 1..9) (all_different (Sudokul[..,col]));
constraint forall(i,j in {0,3,6})
(all_different (Sudokul[i+l..i+3, J+1..3+3]1));

-31-

Modelling Languages

UP
UNIVERSITET

The following fully declarative modelling languages are powerful enough to
encode NP-hard problems:

m Mixed integer programming (MIP): satisfy a set of linear equalities (=)
and inequalities (<, <, >, >), but not disequalities (#), over real-number
decision variables and integer decision variables weighted by real-number
constants, such that a linear objective function is optimised.

m Boolean satisfiability solving (SAT): satisfy a set of disjunctions of
possibly negated Boolean decision variables.

m SAT modulo theories (SMT) and constraint programming (CP) do not have
such small standardised low-level modelling languages, but enable the
higher level of the previous sample models.
= |[n course 1DL451: Modelling for Combinatorial Optimisation, we use
such higher-level models in order to drive CP, MIP, SAT, SMT, ... solvers.

The End of
Course AD2

-32-

https://www.uu.se/en/study/course?query=1DL451

UPPSALA
UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation

Modelling

Solving

Outline

2. Combinatorial Optimisation

Solving

-33-

UPPSALA
UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisat

Course AD3
Co

Examples (Solving technologies)
With general-purpose solvers, taking model and data as input:
m (Mixed) integer linear programming (IP and MIP)
m Boolean satisfiability (SAT)
m SAT (resp. optimisation) modulo theories (SMT and OMT)
m Constraint programming (CP)
I
m Hybrid technologies (LCG = CP + SAT, ...)
Methodologies, usually without modelling and solvers:
m Dynamic programming (DP)

m Greedy algorithms
m Approximation algorithms
m Stochastic local search (SLS)

] oo
-34-

UPPSALA
UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisat

Course AD3
Co

Examples (Solving technologies)
With general-purpose solvers, taking model and data as input:

m (Mixed) integer linear programming (IP and MIP) in AD3
m Boolean satisfiability (SAT) in AD3
m SAT (resp. optimisation) modulo theories (SMT and OMT) SMT in AD3
m Constraint programming (CP) via 1DL705
|

m Hybrid technologies (LCG = CP + SAT, ...)
Methodologies, usually without modelling and solvers:

m Dynamic programming (DP) in 1DL231: AD2
m Greedy algorithms in 1DL231: AD2
m Approximation algorithms in AD3
m Stochastic local search (SLS) in AD3

] oo
-34-

https://www.uu.se/en/study/course?query=1DL705

Ml Solvers

UNIVERSITET

e o m Black-box solvers (for SAT, SMT, OMT, IP, MIP, ...)
Course AD2 have general-purpose + inference +
i that is difficult to influence by the modeller.

= AD3
m Glass-box solvers (for CP, LCG, ...)
have general-purpose + inference +
that is easy to influence, if desired, by the modeller.
= via 1DL705

m Special-purpose solvers (for TSP, .. .)
exist for pure problems (that is: problems without side constraints).

-35-

https://www.uu.se/en/study/course?query=1DL705

UPPSALA
UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation

Correctness Is Not Enough for Models

-36-

ALA
UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation

Modelling is an Art

There are good and bad models for each constraint problem:
1= AD3 and 1DL451: Modelling

m Different models of a problem may take different time
on the same solver for the same instance.

m Different models of a problem may scale differently
on the same solver for instances of growing size.

m Different solvers may take different time
on the same model for the same instance.

Good modellers are worth their weight in gold!

Use solvers: based on decades of cutting-edge research,
they are very hard to beat on exact solving.

-37-

https://www.uu.se/en/study/course?query=1DL451

UPPSALA OUtI i ne

UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation

3. Course AD3
Contents
New Concepts
Learning Outcomes
Organisation

-38-

UPPSALA OUtI i ne

UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation

3. Course AD3
Contents

-39-

Common Thread: Coping with NP-Hardness

UPPSAL
UNIVERSITET

Mixed integer programming (MIP)
Stochastic local search (SLS)

The End of

Course AD2 Amortised analysis (CLRS4: Chapter 16)
Combinatoril Probabilistic analysis (Chapter 5)
Randomised algorithms: (Chapter 5)

universal hashing, ... (Section 11.3.4)

Course AD3 A Proving NP-completeness by reduction (Chapter 34)
Approximation algorithms (Chapter 35)

B Boolean satisfiability (SAT)
Bl SAT modulo theories (SMT)
CLRS4 Textbook:
Introduction to Algorithms (4th edition) (errata).
T. H. Cormen, Ch. E. Leiserson, R. L. Rivest, and C. Stein.
The MIT Press, 2022.

- 40 -

https://mitpress.mit.edu/books/introduction-algorithms-fourth-edition
https://mitp-content-server.mit.edu/books/content/sectbyfn/books_pres_0/11599/e4-bugs.html

Outline

UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation

Course AD3

Contents

3. Course AD3

New Concepts

_41-

U,:]I,E,isﬁg‘ﬂ In a probabilistic algorithm analysis, we use probability theory: knowing or
assuming the distribution of the inputs, we compute the average-case time
(as opposed to the worst-case time) of a deterministic algorithm.

The End of
Course AD2

Example

The brute-force string matching algorithm for finding all occurrences of a
pattern P of length m within a text T of length n > m takes O(n— m+ 1) time
Course AD3 on average when P and T are random strings, but this is a completely
unreasonable assumption. (Chapter 32 in CLRS4)

Combinatorial
Optimisation

Probabilistic analysis helps gain insight into a problem and helps design an
efficient algorithm for it, when we have a reasonable assumption on the
distribution of the inputs.

_42-

UP

BLSEl A randomised algorithm (as opposed to a deterministic algorithm) itself makes
random choices, independently of the actual distribution of the inputs. We refer
to the time of a randomised algorithm as expected time (not: average time).

The End of

Course AD2

Examples

m A randomised algorithm by Karger-Klein-Tarjan (1993) computes in
O(V + E) expected time a minimum spanning tree (MST) of a connected
undirected graph with vertex set V and edge set E. (Chapter 21)
m A randomised algorithm computes in O(m) expected time a prime number
larger than m for fingerprinting in the Rabin-Karp string matcher.
(Chapter 32)

Many randomised algorithms have no worst-case input!

- 43 -

UPPSALA In an amortised analysis, we compute the worst-case time of a chain of
Bl data-structure operations, and average it over the operations. We refer to this
time as an amortised time (as opposed to an average-case time, as no
probability is used here, and to the possibly non-tight worst-case time).

The End of

Course AD2

Combinatorial
Optimisation

Examples
m A chain of m find-and-compress-paths or union-by-rank operations on

disjoint sets of n items takes O(m - Ig* n) time, where Ig* n < 5 in practice.
Course AD3 (Chapter 19)

Contents

m In a Fibonacci heap of n items, extracting a minimum takes O(Ig n)

amortised time, and decreasing a key takes O(1) amortised time.
(online chapter; not in AD2)

m Prim’s MST algorithm takes at worst O(E + Vg V) time
when using a Fibonacci heap. (Chapter 21)

_44 -

. Dealing in polynomial time with (instances of) optimisation problems where
aRESALA brute-force or exact solving is too costly:

m A greedy algorithm builds a feasible solution decision variable by decision
variable, making locally optimal choices in the hope of reaching an optimal

The End of solution. Greedy algorithms build either provably optimal solutions (for
Course AD2 Ly . o y .

Combimatoril example, Prim’s MST algorithm and Dijkstra’s single-source shortest
Optimisation paths algorithm) or at-best optimal solutions.

m A local search algorithm repairs a possibly infeasible candidate solution,
by reassigning some decision variables at every iteration, until an

Course AD3

allocated resource (such as an iteration count or a time budget) is
exhausted, in the hope of reaching a feasible or even optimal solution.

m An approximation algorithm for an NP-hard optimisation problem builds a
feasible solution whose objective value is provably within a known factor of
the optimum.

All techniques are orthogonal: there exist randomised local search algorithms,
greedy approximation algorithms, etc.

- 45 -

UPPSALA OUtI i ne

UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation

C

New Concepts

Loarning Ouicomes 3. Course AD3

Learning Outcomes

- 46 -

UPPSALA
UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation

Course AD3
s
pls

Learning Outcomes

In order to pass, the student must be able to:
m analyse NP-completeness of an algorithmic problem;

m use advanced algorithm analysis methods, such as amortised analysis
and probabilistic analysis;

m use advanced algorithm design methods in order to approach hard
algorithmic problems in a pragmatic way, such as by using:
® randomised algorithms: universal hashing, ...
® approximation algorithms
® stochastic local search: simulated annealing, tabu search, ...
® mixed integer programming (MIP)
® Boolean satisfiability (SAT)
e SAT modulo theories (SMT)

m present and discuss topics related to the course content orally and in
writing with a skill appropriate for the level of education
= written reports and oral resubmissions!

_47-

UPPSALA
UNIVERSITET

The End of
Course AD2

Combinatorial
Optimisation

Organisation

Outline

3. Course AD3

Organisation

- 48 -

Course Organisation and Suggested Time Budget

UPPSALA
UNIVERSITET

Period 3: January to March, budget = 133.3 hours:

The End of

Course AD2 m 12 lectures, including a mandatory guest lecture, budget = 21 hours

Combinatorial

Optimisat m 2 assignments with 3 help sessions, 1 grading session, 1 solution session
per assignment, on 2 problems each, on non-exam topics,

to be done by student-chosen duo team:

suggested budget = average of 30 hours/assignment/student (2 credits)

m 1 written closed-book exam of 3 hours,
to be done individually:
suggested budget = 52 hours (3 credits)

m Prerequisites: Algorithms and Data Structures 2 (AD2) (course 1DL231)
or equivalent

- 49 -

https://www.uu.se/en/study/course?query=1DL231

A@ll Examination

UNIVERSITET

Modelling / programming, experimenting, and reporting:

The End of m Mixed integer programming (MIP): Assignment 1
— m Stochastic local search (SLS): Assignment 1
m Boolean satisfiability (SAT): Assignment 2
m SAT modulo theories (SMT): Assignment 2
Theory questions, drawn from a published list of potential exam questions:
m Amortised analysis and probabilistic analysis: exam
m Randomised algorithms: exam
m NP-completeness: 50% threshold at exam
m Approximation algorithms: exam

Exam study groups are allowed and encouraged, as the exam is individual.

-50-

https://pierre-flener.github.io/courses/AD3/exam

2 Assignment Cycles of 3 Weeks

UP A
UNIVERSITET

Let D; be the deadline of Assignment /, with j € 1..2:

T m D; — 16: publication and all needed material taught: start!

Course AD2

m D; — 10: help session a: attendance strongly recommended!
m D; — 7: help session b: attendance strongly recommended!
m D; — 2: help session c: attendance strongly recommended!
m D; + 0: submission, by 13:00 Swedish time, on a Friday

m < D; +10 at 16:00: your initial score a; € 0..5 points
for each Problem j of Assignment i/, with j € 1..2

m D; + 11: teamwise oral grading session on some Problems j
where a; € {1,2}: possibility of earning 1 extra point for your final score;
otherwise final score = initial score

m D;+ 11 = D;4y — 10: solution session and help session a

-51 -

Al 2 Assignment Credits and Overall Influence

UNIVERSITET

Let a; be your final score on Problem j of Assignment /, with /,j € 1..2:

The End of

Course AD2 m 20% threshold: V/,] €1..2: ajj >20%-5=1 (< 3)
Combinatorial You may not catastrophically fail on individual problems

Optimisat

m 30% threshold: Vi: a; = aj; + ai > 30% - (5+5) =3 (< 5)
You can partially fail on individual problems or entire assignments

m 50% threshold: a=a; +a> >50%-2-(5+5) =10
The formula for your assignment grade in 3..5 is at the course homepage

m Worth going full-blast: Your assignment score a is meshed with
your exam score e in order to determine your overall course grade in 3..5,
if 10 <a<?20and 10 < e < 20:
see the formula at the course homepage

-52-

https://pierre-flener.github.io/courses/AD3/grades.html
https://pierre-flener.github.io/courses/AD3/grades.html

-4l Caution!

UNIVERSITET

m There is a huge jump from AD2 (or equivalent)
The End of — with its mostly (pseudo-)polytime algorithms —

Course AD2

to AD3, where only NP-hard problems are considered.

m Correctness is required (unlike in AD2), but very easy to achieve with the
help of our provided polytime solution checkers or some revealed optima:
we grade for speed (and memory usage).

m Especially the MIP, SAT, and SMT modelling tasks
are totally unlike anything most of you have ever seen,
and this takes time to wrap one’s head around.

m Ease or success with the assignments in AD2 does not imply the same
ease or the same level of success with the assignments in AD3: the help
sessions are strongly recommended, and there is almost no internet help.

-53-

https://www.uu.se/en/study/course?query=1DL231

Assignment Rules

UPPSALA
UNIVERSITET

Register a team by Sunday 26 January 2025 at 23:59 at Studium:
The End of m Duo team: Two consenting teammates sign up
Course AD2 m Solo team: Apply to the head teacher, who rarely agrees
Optimisation. m Random partner? Request from the helpdesk, else you are bounced
Other considerations:
m Why (not) like this? Why no email reply? See FAQ
m Teammate swapping: Allowed, but to be declared to the helpdesk
m Teammate scores may differ if no-show or passivity at grading session

m No freeloader: Implicit honour declaration in reports that each partner
can individually explain everything; random checks will be made by us
m No plagiarism: Implicit honour declaration in reports;
extremely powerful detection tools will be used by us;
suspected cases of using or providing must be reported!

-54 -

Course AD3

How To Communicate by Email or Studium?

UPPSALA
UNIVERSITET

m If you have a question about the lecture material or course
The End of organisation, then email the head teacher. An immediate answer will be
given right before and after lectures, as well as during their breaks.

Combinatorial
Optimisation

m If you have a question about the assignments or infrastructure,
then contact the assistants at a help session or solution session for an
Course AD3 immediate answer.

Short clarification questions (that is: not about modelling or programming
difficulties) that are either emailed (find the address at Studium)

or posted (at the Studium discussion) to the AD3 helpdesk

are answered as soon as possible during working days and hours:
almost all the assistants’ budgeted time is allocated to grading

and to the help, grading, and solution sessions.

-55-

What Has Changed Since Last Time?

UPPSALA
UNIVERSITET

Changes made by the TekNat Faculty:

The End of

Course AD2 m This year’s Period 3 is only 9 weeks long (instead of 10), and our exam is
Combinatorial on the 5th day of its 8th week, so all has to be taught in only 7 weeks.

Optimisat

Changes triggered by the previous course evaluation:
m Timetable completely overhauled, with less front-loading of lectures.
m Assignment skeleton reports completely overhauled.
m SLS and SAT solution checkers provided as source code (not as binaries).
m SLS and SAT experiment loads significantly reduced.

m One SLS task and two SAT tasks significantly shrunk.

- 56 -

Al What To Do Now?

UNIVERSITET

m Bookmark and read the entire AD3 website, especially the FAQ list.

The End of
Course AD2

m Get started on Assignment 1 and have questions ready for the first help
session, which is on Tuesday 28 January 2025.

m Register a duo team by Sunday 26 January 2025 at 23:59, possibly upon
advertising for a teammate at a course event or the discussion at Studium,
and requesting a random partner from the AD3 helpdesk as a last resort.

m Install AMPL (see Studium for a free download with the classroom
license) on your own hardware, if you have any.

-57-

https://pierre-flener.github.io/courses/AD3/course.html

	The End of Course AD2
	Combinatorial Optimisation
	Constraint Problems
	Solving Technologies
	Modelling
	Solving

	Course AD3
	Contents
	New Concepts
	Learning Outcomes
	Organisation

