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In a decision problem we seek a ‘yes’ / ‘no’ answer to an existence question.
An instance of a problem is given by its input data.

Example (Travelling salesperson: Decision TSP)
Given a budget b and a map with n cities, is there a route visiting each city
exactly once, returning to the starting city, and costing at most b ?

A decision problem R is:
in NP if a witness to a ‘yes’ instance is checkable in time polynomial in the
instance size: checking is in P;
NP-complete if in NP and there is a reduction from each problem Q in NP,
polytime converting any instance of Q into a same-answer instance of R.

It is believed that NP-complete problems are intractable (or: hard),
requiring non-polynomial time to solve exactly.

Example
TSP is NP-complete as a witness is checkable in O(n) time and
the NP-complete Hamiltonian-Cycle problem reduces to it.
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In a satisfaction problem we seek a witness for a ‘yes’ answer.

Example (Satisfaction TSP)
Given a budget b and a map with n cities, find a route visiting each city
exactly once, returning to the starting city, and costing at most b.

In an optimisation problem we seek an optimal witness, according to
some objective function, for a ‘yes’ answer.

Example (Optimisation TSP)
Given a map with n cities, find a cheapest route visiting each city
exactly once and returning to the starting city.

In addition to decision problems that are at least as hard as every NP problem
(as every NP problem reduces to them), satisfaction and optimisation problems
with NP-complete decision versions are often also said to be NP-hard:
they are unlikely to be easier than their decision versions.
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What Now?

Several courses at Uppsala University teach techniques
for addressing NP-hard optimisation and satisfaction problems:

1TD184 Continuous Optimisation (period 2)

1DL451 Modelling for Combinatorial Optimisation (period 2)

1DL481 Algorithms and Data Structures 3 (period 3)

NP-hardness is not where the fun ends, but where it begins!
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Example (Optimisation TSP over n cities)
A brute-force algorithm evaluates all n! candidate routes:

A computer of today evaluates 106 routes / second:
n time
11 40 seconds
14 1 day
18 203 years
20 77k years

Planck time is the shortest useful interval: ≈ 5.4 · 10−44 seconds;
a Planck computer would evaluate 1.8 · 1043 routes / second:

n time
37 0.7 seconds
41 20 days
48 1.5 · age of universe

The dynamic program by Bellman-Held-Karp “only” takes O(n2 · 2n) time:
a computer of today takes a day for n = 27, a year for n = 35, the age of the
universe for n = 67, and beats the O(n!) algo on Planck computer for n ≥ 44.
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Intelligent Search upon NP-Hardness

Do not give up but try to stay ahead of the curve:
there is an instance size until which an exact algorithm is fast enough!
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Concorde TSP Solver beats Bellman-Held-Karp exact algorithm: it uses local
search & approximation algos, but sometimes proves exactness of its optima.
The largest instance solved exactly, in 136 CPU years in 2006, has n = 85900.

AD3 - 8 -

https://www.math.uwaterloo.ca/tsp/concorde


The End of
Course AD2

Combinatorial
Optimisation
Constraint Problems

Solving Technologies

Modelling

Solving

Course AD3
Contents

New Concepts

Learning Outcomes

Organisation

Outline

1. The End of Course AD2

2. Combinatorial Optimisation
Constraint Problems
Solving Technologies
Modelling
Solving

3. Course AD3
Contents
New Concepts
Learning Outcomes
Organisation

AD3 - 9 -



The End of
Course AD2

Combinatorial
Optimisation
Constraint Problems

Solving Technologies

Modelling

Solving

Course AD3
Contents

New Concepts

Learning Outcomes

Organisation

Optimisation

Optimisation is a science of service:
to scientists, to engineers, to artists, and to society.
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Example (Agricultural experiment design)
plot1 plot2 plot3 plot4 plot5 plot6 plot7

barley
corn

millet
oats
rye

spelt
wheat

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot.

Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.
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Example (Agricultural experiment design)
plot1 plot2 plot3 plot4 plot5 plot6 plot7

barley ✓ ✓ ✓ – – – –
corn ✓ – – ✓ ✓ – –

millet ✓ – – – – ✓ ✓
oats – ✓ – ✓ – ✓ –
rye – ✓ – – ✓ – ✓

spelt – – ✓ ✓ – – ✓
wheat – – ✓ – ✓ ✓ –

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot.

Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.
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Example (Doctor rostering)

Mon Tue Wed Thu Fri Sat Sun
Doctor A
Doctor B
Doctor C
Doctor D
Doctor E

Constraints to be satisfied:
1 #on-call doctors / day = 1
2 #operating doctors / weekday ≤ 2
3 #operating doctors / week ≥ 7
4 #appointed doctors / week ≥ 4
5 day off after operation day
6 . . .

Objective function to be minimised: Cost: . . .
AD3 - 13 -
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Example (Doctor rostering)

Mon Tue Wed Thu Fri Sat Sun
Doctor A call none oper none oper none none
Doctor B appt call none oper none none call
Doctor C oper none call appt appt call none
Doctor D appt oper none call oper none none
Doctor E oper none oper none call none none

Constraints to be satisfied:
1 #on-call doctors / day = 1
2 #operating doctors / weekday ≤ 2
3 #operating doctors / week ≥ 7
4 #appointed doctors / week ≥ 4
5 day off after operation day
6 . . .

Objective function to be minimised: Cost: . . .
AD3 - 13 -
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Example (Vehicle routing: parcel delivery)
Given a depot with parcels for clients and a vehicle fleet,
find which vehicle visits which client when.
Constraints to be satisfied:

1 All parcels are delivered on time.
2 No vehicle is overloaded.
3 Driver regulations are respected.
4 . . .

Objective function to be minimised:
Cost: the total fuel consumption and driver salary.
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Application Areas

School timetabling Sports tournament design

Security: SQL injection? Container packing
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Applications in Programming and Testing

Robot programming Sensor-net configuration

Compiler design Base-station testing
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Applications in Air Traffic Management

Demand vs capacity Airspace sectorisation

Contingency planning
Flow Time Span Hourly Rate
From: Arlanda 00:00 – 09:00 3
To: west, south 09:00 – 18:00 5

18:00 – 24:00 2
From: Arlanda 00:00 – 12:00 4
To: east, north 12:00 – 24:00 3
. . . . . . . . .

Workload balancing
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Applications in Biology and Medicine

Phylogenetic supertree Haplotype inference

Medical image analysis Doctor rostering

gy
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Definitions
In a constraint problem, values have to be found for all the unknowns,
called variables (in the mathematical sense; also called decision variables)
and ranging over given sets, called domains, so that:

All the given constraints on the decision variables are satisfied.
Optionally: A given objective function on the decision variables has an
optimal value: either a minimal cost or a maximal profit.

A candidate solution to a constraint problem maps each decision variable to a
value within its domain; it is:

feasible if all the constraints are satisfied;
optimal if the objective function takes an optimal value.

The search space consists of all candidate solutions.
A solution to a satisfaction problem is feasible.
An optimal solution to an optimisation problem is feasible and optimal.
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Search spaces are often larger than the universe!

Many important real-life problems are NP-hard or worse: their real-life
instances can only be solved exactly and fast enough by intelligent search,
unless P = NP. ☞ NP-hardness is not where the fun ends, but where it begins!
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A solving technology offers languages, methods, and tools for:

what: Modelling constraint problems in a declarative language.

and / or

how: Solving constraint problems intelligently:

• Search: Explore the space of candidate solutions.

• Inference: Reduce the space of candidate solutions.

• Relaxation: Exploit solutions to easier problems.

A solver is an off-the-shelf program that takes any model and data as input
and tries to solve that problem instance.

Combinatorial (= discrete) optimisation covers satisfaction and optimisation
problems for variables ranging over discrete sets: combinatorial problems.
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Example (Agricultural experiment design, AED)
plot1 plot2 plot3 plot4 plot5 plot6 plot7

barley ✓ ✓ ✓ – – – –
corn ✓ – – ✓ ✓ – –

millet ✓ – – – – ✓ ✓
oats – ✓ – ✓ – ✓ –
rye – ✓ – – ✓ – ✓

spelt – – ✓ ✓ – – ✓
wheat – – ✓ – ✓ ✓ –

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot.

Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.

General term: balanced incomplete block design (BIBD).
AD3 - 24 -
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Example (Agricultural experiment design, AED)
plot1 plot2 plot3 plot4 plot5 plot6 plot7

barley 1 1 1 0 0 0 0
corn 1 0 0 1 1 0 0

millet 1 0 0 0 0 1 1
oats 0 1 0 1 0 1 0
rye 0 1 0 0 1 0 1

spelt 0 0 1 1 0 0 1
wheat 0 0 1 0 1 1 0

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot.

Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.

General term: balanced incomplete block design (BIBD).
AD3 - 24 -
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In a BIBD, the plots are called blocks and the grains are called varieties:

Example (BIBD integer model: ✓⇝ 1 and –⇝ 0)

-3 enum Varieties; enum Blocks;
-2 int: blockSize; int: sampleSize; int: balance;
-1 array[Varieties,Blocks] of var 0..1: BIBD; % BIBD[v,b]=1 iff v is in b
0 solve satisfy;
1 constraint forall(b in Blocks) (blockSize = count(BIBD[..,b], 1));
2 constraint forall(v in Varieties)(sampleSize = count(BIBD[v,..], 1));
3 constraint forall(v, w in Varieties where v < w)

(balance = count([BIBD[v,b]+BIBD[w,b] | b in Blocks], 2));

Example (Instance data for our AED)

-3 Varieties = {barley,...,wheat}; Blocks = {plot1,...,plot7};
-2 blockSize = 3; sampleSize = 3; balance = 1;

AD3 - 25 -
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Reconsider the model fragment:

2 constraint forall(v in Varieties)(sampleSize = count(BIBD[v,..], 1));

This constraint is declarative (and by the way not within linear algebra),
so read it using only the verb “to be” or synonyms thereof:

for all varieties v,
the count of occurrences of 1 in row v of BIBD
must equal sampleSize

The constraint is not procedural:

for all varieties v,
we first count the occurrences of 1 in row v
and then check if that count equals sampleSize

The latter reading is appropriate for solution checking,
but solution finding performs no such procedural counting.
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Example (Idea for another BIBD model)
barley {plot1,plot2,plot3

,plot4,plot5,plot6,plot7

}
corn {plot1,

plot2,plot3,

plot4,plot5

,plot6,plot7

}
millet {plot1,

plot2,plot3,plot4,plot5,

plot6,plot7}
oats {

plot1,

plot2,

plot3,

plot4,

plot5,

plot6

,plot7

}
rye {

plot1,

plot2,

plot3,plot4,

plot5,

plot6,

plot7}
spelt {

plot1,plot2,

plot3,plot4,

plot5,plot6,

plot7}
wheat {

plot1,plot2,

plot3,

plot4,

plot5,plot6

,plot7

}

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot.
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Example (BIBD set model: a block set per variety)

-3 enum Varieties; enum Blocks;
-2 int: blockSize; int: sampleSize; int: balance;
-1 array[Varieties] of var set of Blocks: BIBD; % BIBD[v] = blocks for v
0 solve satisfy;
1 constraint forall(b in Blocks)

(blockSize = sum(v in Varieties)(b in BIBD[v]));
2 constraint forall(v in Varieties)

(sampleSize = card(BIBD[v]));
3 constraint forall(v, w in Varieties where v < w)

(balance = card(BIBD[v] intersect BIBD[w]));

Example (Instance data for our AED)

-3 Varieties = {barley,...,wheat}; Blocks = {plot1,...,plot7};
-2 blockSize = 3; sampleSize = 3; balance = 1;

AD3 - 28 -
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Example (Doctor rostering)

Mon Tue Wed Thu Fri Sat Sun
Doctor A call none oper none oper none none
Doctor B appt call none oper none none call
Doctor C oper none call appt appt call none
Doctor D appt oper none call oper none none
Doctor E oper none oper none call none none

Constraints to be satisfied:
1 #on-call doctors / day = 1
2 #operating doctors / weekday ≤ 2
3 #operating doctors / week ≥ 7
4 #appointed doctors / week ≥ 4
5 day off after operation day
6 . . .

Objective function to be minimised: Cost: . . .
AD3 - 29 -
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Example (Doctor rostering)
-5 set of int: Days; % d mod 7 = 1 iff d is a Monday
-4 enum Doctors;
-3 enum ShiftTypes = {appt, call, oper, none};
-2 % Roster[i,j] = shift type of Dr i on day j:
-1 array[Doctors,Days] of var ShiftTypes: Roster;
0 solve minimize ...; % plug in an objective function
1 constraint forall(d in Days)(count(Roster[..,d],call) = 1);
2 constraint forall(d in Days where d mod 7 in 1..5)

(count(Roster[..,d],oper) <= 2);
3 constraint count(Roster,oper) >= 7;
4 constraint count(Roster,appt) >= 4;
5 constraint forall(d in Doctors)

(regular(Roster[d,..],"((oper none) | appt | call | none)*"));
6 ... % other constraints

Example (Instance data for our small hospital unit)
-5 Days = 1..7;
-4 Doctors = {Dr_A, Dr_B, Dr_C, Dr_D, Dr_E};

AD3 - 30 -
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Example (Sudoku)

8
3 6

7 9 2
5 7

4 5 7
1 3

1 6 8
8 5 1

9 4

8 1 2 7 5 3 6 4 9
9 4 3 6 8 2 1 7 5
6 7 5 4 9 1 2 8 3
1 5 4 2 3 7 8 9 6
3 6 9 8 4 5 7 2 1
2 8 7 1 6 9 5 3 4
5 2 1 9 7 4 3 6 8
4 3 8 5 2 6 9 1 7
7 9 6 3 1 8 4 5 2

-2 array[1..9,1..9] of var 1..9: Sudoku;
-1 ... % load the hints
0 solve satisfy;
1 constraint forall(row in 1..9)(all_different(Sudoku[row,..]));
2 constraint forall(col in 1..9)(all_different(Sudoku[..,col]));
3 constraint forall(i,j in {0,3,6})

(all_different(Sudoku[i+1..i+3,j+1..j+3]));
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Modelling Languages

The following fully declarative modelling languages are powerful enough to
encode NP-hard problems:

Mixed integer programming (MIP): satisfy a set of linear equalities (=)
and inequalities (<, ≤, ≥, >), but not disequalities (̸=), over real-number
decision variables and integer decision variables weighted by real-number
constants, such that a linear objective function is optimised.

Boolean satisfiability solving (SAT): satisfy a set of disjunctions of
possibly negated Boolean decision variables.

SAT modulo theories (SMT) and constraint programming (CP) do not have
such small standardised low-level modelling languages, but enable the
higher level of the previous sample models.
☞ In course 1DL451: Modelling for Combinatorial Optimisation, we use
such higher-level models in order to drive CP, MIP, SAT, SMT, . . . solvers.
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Examples (Solving technologies)
With general-purpose solvers, taking model and data as input:

(Mixed) integer linear programming (IP and MIP)
Boolean satisfiability (SAT)
SAT (resp. optimisation) modulo theories (SMT and OMT)
Constraint programming (CP)
. . .
Hybrid technologies (LCG = CP + SAT, . . . )

Methodologies, usually without modelling and solvers:
Dynamic programming (DP)
Greedy algorithms
Approximation algorithms
Stochastic local search (SLS)
. . .
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Examples (Solving technologies)
With general-purpose solvers, taking model and data as input:

(Mixed) integer linear programming (IP and MIP) in AD3
Boolean satisfiability (SAT) in AD3
SAT (resp. optimisation) modulo theories (SMT and OMT) SMT in AD3
Constraint programming (CP) via 1DL705
. . .
Hybrid technologies (LCG = CP + SAT, . . . )

Methodologies, usually without modelling and solvers:
Dynamic programming (DP) in 1DL231: AD2
Greedy algorithms in 1DL231: AD2
Approximation algorithms in AD3
Stochastic local search (SLS) in AD3
. . .
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Solvers

Black-box solvers (for SAT, SMT, OMT, IP, MIP, . . . )
have general-purpose search + inference + relaxation
that is difficult to influence by the modeller.

☞ AD3

Glass-box solvers (for CP, LCG, . . . )
have general-purpose search + inference + relaxation
that is easy to influence, if desired, by the modeller.

☞ via 1DL705

Special-purpose solvers (for TSP, . . . )
exist for pure problems (that is: problems without side constraints).
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Correctness Is Not Enough for Models
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Modelling is an Art

There are good and bad models for each constraint problem:
☞ AD3 and 1DL451: Modelling

Different models of a problem may take different time
on the same solver for the same instance.

Different models of a problem may scale differently
on the same solver for instances of growing size.

Different solvers may take different time
on the same model for the same instance.

Good modellers are worth their weight in gold!

Use solvers: based on decades of cutting-edge research,
they are very hard to beat on exact solving.
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Common Thread: Coping with NP-Hardness

1 Mixed integer programming (MIP)
2 Stochastic local search (SLS)
3 Amortised analysis (CLRS4: Chapter 16)
4 Probabilistic analysis (Chapter 5)
5 Randomised algorithms: (Chapter 5)

universal hashing, . . . (Section 11.3.4)
6 Proving NP-completeness by reduction (Chapter 34)
7 Approximation algorithms (Chapter 35)
8 Boolean satisfiability (SAT)
9 SAT modulo theories (SMT)

CLRS4 Textbook:
Introduction to Algorithms (4th edition) (errata).
T. H. Cormen, Ch. E. Leiserson, R. L. Rivest, and C. Stein.
The MIT Press, 2022.
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In a probabilistic algorithm analysis, we use probability theory: knowing or
assuming the distribution of the inputs, we compute the average-case time
(as opposed to the worst-case time) of a deterministic algorithm.

Example
The brute-force string matching algorithm for finding all occurrences of a
pattern P of length m within a text T of length n ≥ m takes O(n − m + 1) time
on average when P and T are random strings, but this is a completely
unreasonable assumption. (Chapter 32 in CLRS4)

Probabilistic analysis helps gain insight into a problem and helps design an
efficient algorithm for it, when we have a reasonable assumption on the
distribution of the inputs.
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A randomised algorithm (as opposed to a deterministic algorithm) itself makes
random choices, independently of the actual distribution of the inputs. We refer
to the time of a randomised algorithm as expected time (not: average time).

Examples
A randomised algorithm by Karger-Klein-Tarjan (1993) computes in
O(V + E) expected time a minimum spanning tree (MST) of a connected
undirected graph with vertex set V and edge set E . (Chapter 21)
A randomised algorithm computes in O(m) expected time a prime number
larger than m for fingerprinting in the Rabin-Karp string matcher.

(Chapter 32)

Many randomised algorithms have no worst-case input!
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In an amortised analysis, we compute the worst-case time of a chain of
data-structure operations, and average it over the operations. We refer to this
time as an amortised time (as opposed to an average-case time, as no
probability is used here, and to the possibly non-tight worst-case time).

Examples
A chain of m find-and-compress-paths or union-by-rank operations on
disjoint sets of n items takes O(m · lg∗ n) time, where lg∗ n ≤ 5 in practice.

(Chapter 19)
In a Fibonacci heap of n items, extracting a minimum takes O(lg n)
amortised time, and decreasing a key takes O(1) amortised time.

(online chapter; not in AD2)
Prim’s MST algorithm takes at worst O(E + V lgV ) time
when using a Fibonacci heap. (Chapter 21)
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Dealing in polynomial time with (instances of) optimisation problems where
brute-force or exact solving is too costly:

A greedy algorithm builds a feasible solution decision variable by decision
variable, making locally optimal choices in the hope of reaching an optimal
solution. Greedy algorithms build either provably optimal solutions (for
example, Prim’s MST algorithm and Dijkstra’s single-source shortest
paths algorithm) or at-best optimal solutions.

A local search algorithm repairs a possibly infeasible candidate solution,
by reassigning some decision variables at every iteration, until an
allocated resource (such as an iteration count or a time budget) is
exhausted, in the hope of reaching a feasible or even optimal solution.

An approximation algorithm for an NP-hard optimisation problem builds a
feasible solution whose objective value is provably within a known factor of
the optimum.

All techniques are orthogonal: there exist randomised local search algorithms,
greedy approximation algorithms, etc.
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In order to pass, the student must be able to:

analyse NP-completeness of an algorithmic problem;

use advanced algorithm analysis methods, such as amortised analysis
and probabilistic analysis;

use advanced algorithm design methods in order to approach hard
algorithmic problems in a pragmatic way, such as by using:

• randomised algorithms: universal hashing, . . .
• approximation algorithms
• stochastic local search: simulated annealing, tabu search, . . .
• mixed integer programming (MIP)
• Boolean satisfiability (SAT)
• SAT modulo theories (SMT)

present and discuss topics related to the course content orally and in
writing with a skill appropriate for the level of education
☞ written reports and oral resubmissions!
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Course Organisation and Suggested Time Budget

Period 3: January to March, budget = 133.3 hours:

12 lectures, including a mandatory guest lecture, budget = 21 hours

2 assignments with 3 help sessions, 1 grading session, 1 solution session
per assignment, on 2 problems each, on non-exam topics,
to be done by student-chosen duo team:
suggested budget = average of 30 hours / assignment / student (2 credits)

1 written closed-book exam of 3 hours,
to be done individually:
suggested budget = 52 hours (3 credits)

Prerequisites: Algorithms and Data Structures 2 (AD2) (course 1DL231)
or equivalent
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Examination

Modelling / programming, experimenting, and reporting:

Mixed integer programming (MIP): Assignment 1

Stochastic local search (SLS): Assignment 1

Boolean satisfiability (SAT): Assignment 2

SAT modulo theories (SMT): Assignment 2

Theory questions, drawn from a published list of potential exam questions:

Amortised analysis and probabilistic analysis: exam

Randomised algorithms: exam

NP-completeness: 50% threshold at exam

Approximation algorithms: exam
Exam study groups are allowed and encouraged, as the exam is individual.
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2 Assignment Cycles of 3 Weeks

Let Di be the deadline of Assignment i , with i ∈ 1..2:

Di − 16: publication and all needed material taught: start!

Di − 10: help session a: attendance strongly recommended!

Di − 7: help session b: attendance strongly recommended!

Di − 2: help session c: attendance strongly recommended!

Di ± 0: submission, by 13:00 Swedish time, on a Friday

≤ Di + 10 at 16:00: your initial score aij ∈ 0..5 points
for each Problem j of Assignment i , with j ∈ 1..2

Di + 11: teamwise oral grading session on some Problems j
where aij ∈ {1,2}: possibility of earning 1 extra point for your final score;
otherwise final score = initial score

Di + 11 = Di+1 − 10: solution session and help session a
AD3 - 51 -
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2 Assignment Credits and Overall Influence

Let aij be your final score on Problem j of Assignment i , with i , j ∈ 1..2:

20% threshold: ∀i , j ∈ 1..2 : aij ≥ 20% · 5 = 1 (< 3)
You may not catastrophically fail on individual problems

30% threshold: ∀i : ai = ai1 + ai2 ≥ 30% · (5 + 5) = 3 (< 5)
You can partially fail on individual problems or entire assignments

50% threshold: a = a1 + a2 ≥ 50% · 2 · (5 + 5) = 10
The formula for your assignment grade in 3..5 is at the course homepage

Worth going full-blast: Your assignment score a is meshed with
your exam score e in order to determine your overall course grade in 3..5,
if 10 ≤ a ≤ 20 and 10 ≤ e ≤ 20:
see the formula at the course homepage
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Caution!

There is a huge jump from AD2 (or equivalent)
— with its mostly (pseudo-)polytime algorithms —
to AD3, where only NP-hard problems are considered.

Correctness is required (unlike in AD2), but very easy to achieve with the
help of our provided polytime solution checkers or some revealed optima:
we grade for speed (and memory usage).

Especially the MIP, SAT, and SMT modelling tasks
are totally unlike anything most of you have ever seen,
and this takes time to wrap one’s head around.

Ease or success with the assignments in AD2 does not imply the same
ease or the same level of success with the assignments in AD3: the help
sessions are strongly recommended, and there is almost no internet help.
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Assignment Rules

Register a team by Sunday 26 January 2025 at 23:59 at Studium:
Duo team: Two consenting teammates sign up
Solo team: Apply to the head teacher, who rarely agrees
Random partner? Request from the helpdesk, else you are bounced

Other considerations:
Why (not) like this? Why no email reply? See FAQ
Teammate swapping: Allowed, but to be declared to the helpdesk
Teammate scores may differ if no-show or passivity at grading session
No freeloader: Implicit honour declaration in reports that each partner
can individually explain everything; random checks will be made by us
No plagiarism: Implicit honour declaration in reports;
extremely powerful detection tools will be used by us;
suspected cases of using or providing must be reported!
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How To Communicate by Email or Studium?

If you have a question about the lecture material or course
organisation, then email the head teacher. An immediate answer will be
given right before and after lectures, as well as during their breaks.

If you have a question about the assignments or infrastructure,
then contact the assistants at a help session or solution session for an
immediate answer.

Short clarification questions (that is: not about modelling or programming
difficulties) that are either emailed (find the address at Studium)
or posted (at the Studium discussion) to the AD3 helpdesk
are answered as soon as possible during working days and hours:
almost all the assistants’ budgeted time is allocated to grading
and to the help, grading, and solution sessions.
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What Has Changed Since Last Time?

Changes made by the TekNat Faculty:

This year’s Period 3 is only 9 weeks long (instead of 10), and our exam is
on the 5th day of its 8th week, so all has to be taught in only 7 weeks.

Changes triggered by the previous course evaluation:

Timetable completely overhauled, with less front-loading of lectures.

Assignment skeleton reports completely overhauled.

SLS and SAT solution checkers provided as source code (not as binaries).

SLS and SAT experiment loads significantly reduced.

One SLS task and two SAT tasks significantly shrunk.

AD3 - 56 -



The End of
Course AD2

Combinatorial
Optimisation
Constraint Problems

Solving Technologies

Modelling

Solving

Course AD3
Contents

New Concepts

Learning Outcomes

Organisation

What To Do Now?

Bookmark and read the entire AD3 website, especially the FAQ list.

Get started on Assignment 1 and have questions ready for the first help
session, which is on Tuesday 28 January 2025.

Register a duo team by Sunday 26 January 2025 at 23:59, possibly upon
advertising for a teammate at a course event or the discussion at Studium,
and requesting a random partner from the AD3 helpdesk as a last resort.

Install AMPL (see Studium for a free download with the classroom
license) on your own hardware, if you have any.
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